skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Brain–computer interfaces for human gait restoration
Abstract In this review article, we present more than a decade of our work on the development of brain–computer interface (BCI) systems for the restoration of walking following neurological injuries such as spinal cord injury (SCI) or stroke. Most of this work has been in the domain of non-invasive electroencephalogram-based BCIs, including interfacing our system with a virtual reality environment and physical prostheses. Real-time online tests are presented to demonstrate the ability of able-bodied subjects as well as those with SCI to purposefully operate our BCI system. Extensions of this work are also presented and include the development of a portable low-cost BCI suitable for at-home use, our ongoing efforts to develop a fully implantable BCI for the restoration of walking and leg sensation after SCI, and our novel BCI-based therapy for stroke rehabilitation.  more » « less
Award ID(s):
1646275
PAR ID:
10323006
Author(s) / Creator(s):
Date Published:
Journal Name:
Control Theory and Technology
Volume:
19
Issue:
4
ISSN:
2095-6983
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    There have been significant advances in the technologies for robot-assisted lower-limb rehabilitation in the last decade. However, the development of similar systems for children has been slow despite the fact that children with conditions such as cerebral palsy (CP), spina bifida (SB) and spinal cord injury (SCI) can benefit greatly from these technologies. Robotic assisted gait therapy (RAGT) has emerged as a way to increase gait training duration and intensity while decreasing the risk of injury to therapists. Robotic walking devices can be coupled with motion sensing, electromyography (EMG), scalp electroencephalography (EEG) or other noninvasive methods of acquiring information about the user’s intent to design Brain-Computer Interfaces (BCI) for neuromuscular rehabilitation and control of powered exoskeletons. For users with SCI, BCIs could provide a method of overground mobility closer to the natural process of the brain controlling the body’s movement during walking than mobility by wheelchair. For adults there are currently four FDA approved lower-limb exoskeletons that could be incorporated into such a BCI system, but there are no similar devices specifically designed for children, who present additional physical, neurological and cognitive developmental challenges. The current state of the art for pediatric RAGT relies on large clinical devices with high costs that limit accessibility. This can reduce the amount of therapy a child receives and slow rehabilitation progress. In many cases, lack of gait training can result in a reduction in the mobility, independence and overall quality of life for children with lower-limb disabilities. Thus, it is imperative to facilitate and accelerate the development of pediatric technologies for gait rehabilitation, including their regulatory path. In this paper an overview of the U.S. Food and Drug Administration (FDA) clearance/approval process is presented. An example device has been used to navigate important questions facing device developers focused on providing lower limb rehabilitation to children in home-based or other settings beyond the clinic. 
    more » « less
  2. The use of scalp electroencephalography (EEG) signals for brain-computer interface (BCI) to control end effectors in real time, while providing mobile capabilities for use at home neurorehabilitation, requires of software and hardware robust solutions. Moreover, to ensure democratized access to these systems, low cost, interoperability, and ease of use are essential. These challenges were addressed in the design, development and validation of the NeuroExo BCI System. As a proof of concept, the system was tested with an exoskeleton system for upper-limb stroke rehabilitation as the end effector. 
    more » « less
  3. Objective: Accurate implementation of real-time non-invasive Brain-Machine / Computer Interfaces (BMI / BCI) requires handling physiological and non-physiological artifacts associated with the measurement modalities. For example, scalp electroencephalographic (EEG) measurements are often considered prone to excessive motion artifacts and other types of artifacts that contaminate the EEG recordings. Although the magnitude of such artifacts heavily depends on the task and the setup, complete minimization or isolation of such artifacts is generally not possible. Approach: We present an adaptive de-noising framework with robustness properties, using a Volterra based non-linear mapping to characterize and handle the motion artifact contamination in EEG measurements. We asked healthy able-bodied subjects to walk on a treadmill at gait speeds of 1-to-4 mph, while we tracked the motion of select EEG electrodes with an infrared video-based motion tracking system. We also placed Inertial Measurement Unit (IMU) sensors on the forehead and feet of the subjects for assessing the overall head movement and segmenting the gait. Main Results: We discuss in detail the characteristics of the motion artifacts and propose a real-time compatible solution to filter them. We report the effective handling of both the fundamental frequency of contamination (synchronized to the walking speed) and its harmonics. Event-Related Spectral Perturbation (ERSP) analysis for walking shows that the gait dependency of artifact contamination is also eliminated on all target frequencies. Significance: The real-time compatibility and generalizability of our adaptive filtering framework allows for the effective use of non-invasive BMI/BCI systems and greatly expands the implementation type and application domains to other types of problems where signal denoising is desirable. Combined with our previous efforts of filtering ocular artifacts, the presented technique allows for a comprehensive adaptive filtering framework to increase the EEG Signal to Noise Ratio (SNR). We believe the implementation will benefit all non-invasive neural measurement modalities, including studies discussing neural correlates of movement and other internal states, not necessarily of BMI focus. 
    more » « less
  4. Quantitative assessment of movement using motion capture provides insights on mobility which are not evident from clinical evaluation. Here, in older individuals that were healthy or had suffered a stroke, we aimed to investigate their balance in terms of changes in body kinematics and muscle activity. Our research question involved determining the effects on post- compared to pre-sensorimotor training exercises on maintaining or improving balance. Our research hypothesis was that training would improve the gait and balance by increasing joint angles and extensor muscle activities in lower extremities and spatiotemporal measures of stroke and elderly people. This manuscript describes a motion capture-based evaluation protocol to assess joint angles and spatiotemporal parameters (cadence, step length and walking speed), as well as major extensor and flexor muscle activities. We also conducted a case study on a healthy older participant (male, age, 65) and an older participant with chronic stroke (female, age, 55). Both participants performed a walking task along a path with a rectangular shape which included tandem walking forward, right side stepping, tandem walking backward, left side stepping to the starting location. For the stroke participant, the training improved the task completion time by 19 s. Her impaired left leg had improved step length (by 0.197 m) and cadence (by 10 steps/min) when walking forward, and cadence (by 12 steps/min) when walking backward. The non-impaired right leg improved cadence when walking forward (by 15 steps/min) and backward (by 27 steps/min). The joint range of motion (ROM) did not change in most cases. However, the ROM of the hip joint increased significantly by 5.8 degrees (p = 0.019) on the left leg side whereas the ROMs of hip joint and knee joint increased significantly by 4.1 degrees (p = 0.046) and 8.1 degrees (p = 0.007) on the right leg side during backward walking. For the healthy participant, the significant changes were only found in his right knee joint ROM having increased by 4.2 degrees (p = 0.031) and in his left ankle joint ROM having increased by 5.5 degrees (p = 0.006) during the left side stepping. 
    more » « less
  5. Motor impairments caused by stroke significantly affect daily activities and reduce quality of life, highlighting the need for effective rehabilitation strategies. This study presents a novel approach to classifying motor tasks using EEG data from acute stroke patients, focusing on left-hand motor imagery, right-hand motor imagery, and rest states. By using advanced source localization techniques, such as Minimum Norm Estimation (MNE), dipole fitting, and beamforming, integrated with a customized Residual Convolutional Neural Network (ResNetCNN) architecture, we achieved superior spatial pattern recognition in EEG data. Our approach yielded classification accuracies of 91.03% with dipole fitting, 89.07% with MNE, and 87.17% with beamforming, markedly surpassing the 55.57% to 72.21% range of traditional sensor domain methods. These results highlight the efficacy of transitioning from sensor to source domain in capturing precise brain activity. The enhanced accuracy and reliability of our method hold significant potential for advancing brain–computer interfaces (BCIs) in neurorehabilitation. This study emphasizes the importance of using advanced EEG classification techniques to provide clinicians with precise tools for developing individualized therapy plans, potentially leading to substantial improvements in motor function recovery and overall patient outcomes. Future work will focus on integrating these techniques into practical BCI systems and assessing their long-term impact on stroke rehabilitation. 
    more » « less