skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Utilizing Keystroke Dynamics as Additional Security Measure to Protect Account Recovery Mechanism [Utilizing Keystroke Dynamics as Additional Security Measure to Protect Account Recovery Mechanism]
Account recovery is ubiquitous across web applications but circumvents the username/password-based login step. Therefore, it deserves the same level of security as the user authentication process. A common simplistic procedure for account recovery requires that a user enters the same email used during registration, to which a password recovery link or a new username could be sent. Therefore, an impostor with access to a user’s registration email and other credentials can trigger an account recovery session to take over the user’s account. To prevent such attacks, beyond validating the email and other credentials entered by the user, our proposed recovery method utilizes keystroke dynamics to further secure the account recovery mechanism. Keystroke dynamics is a type of behavioral biometrics that uses the analysis of typing rhythm for user authentication. Using a new dataset with over 500,000 keystrokes collected from 44 students and university staff when they fill out an account recovery web form of multiple fields, we have evaluated the performance of five scoring algorithms on individual fields as well as feature-level fusion and weighted-score fusion. We achieve the best EER of 5.47% when keystroke dynamics from individual fields are used, 0% for a feature-level fusion of five fields, and 0% for a weighted-score fusion of seven fields. Our work represents a new kind of keystroke dynamics that we would like to call it ‘medium fixed-text’ as it sits between the conventional (short) fixed text and (long) free text research.  more » « less
Award ID(s):
1650503
PAR ID:
10323029
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
7th International Conference on Information Systems Security and Privacy
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Research on keystroke dynamics has the good potential to offer continuous authentication that complements conventional authentication methods in combating insider threats and identity theft before more harm can be done to the genuine users. Unfortunately, the large amount of data required by free-text keystroke authentication often contain personally identifiable information, or PII, and personally sensitive information, such as a user's first name and last name, username and password for an account, bank card numbers, and social security numbers. As a result, there are privacy risks associated with keystroke data that must be mitigated before they are shared with other researchers. We conduct a systematic study to remove PII's from a recent large keystroke dataset. We find substantial amounts of PII's from the dataset, including names, usernames and passwords, social security numbers, and bank card numbers, which, if leaked, may lead to various harms to the user, including personal embarrassment, blackmails, financial loss, and identity theft. We thoroughly evaluate the effectiveness of our detection program for each kind of PII. We demonstrate that our PII detection program can achieve near perfect recall at the expense of losing some useful information (lower precision). Finally, we demonstrate that the removal of PII's from the original dataset has only negligible impact on the detection error tradeoff of the free-text authentication algorithm by Gunetti and Picardi. We hope that this experience report will be useful in informing the design of privacy removal in future keystroke dynamics based user authentication systems. 
    more » « less
  2. As account compromises and malicious online attacks are on the rise, multi-factor authentication (MFA) has been adopted to defend against these attacks. OTP and mobile push notification are just two examples of the popularly adopted MFA factors. Although MFA improve security, they also add additional steps or hardware to the authentication process, thus increasing the authentication time and introducing friction. On the other hand, keystroke dynamics-based authentication is believed to be a promising MFA for increasing security while reducing friction. While there have been several studies on the usability of other MFA factors, the usability of keystroke dynamics has not been studied. To this end, we have built a web authentication system with the standard features of signup, login and account recovery, and integrated keystroke dynamics as an additional factor. We then conducted a user study on the system where 20 participants completed tasks related to signup, login and account recovery. We have also evaluated a new approach for completing the user enrollment process, which reduces friction by naturally employing other alternative MFA factors (OTP in our study) when keystroke dynamics is not ready for use. Our study shows that while maintaining strong security (0% FPR), adding keystroke dynamics reduces authentication friction by avoiding 66.3% of OTP at login and 85.8% of OTP at account recovery, which in turn reduces the authentication time by 63.3% and 78.9% for login and account recovery respectively. Through an exit survey, all participants have rated the integration of keystroke dynamics with OTP to be more preferable to the conventional OTP-only authentication. 
    more » « less
  3. If a web service is so secure that it does not even know---and does not want to know---the identity and contact info of its users, can it still offer account recovery if a user forgets their password? This paper is the culmination of the authors' work to design a cryptographic protocol for account recovery for use by a prominent secure matching system: a web-based service that allows survivors of sexual misconduct to become aware of other survivors harmed by the same perpetrator. In such a system, the list of account-holders must be safeguarded, even against the service provider itself. In this work, we design an account recovery system that, on the surface, appears to follow the typical workflow: the user types in their email address, receives an email containing a one-time link, and answers some security questions. Behind the scenes, the defining feature of our recovery system is that the service provider can perform email-based account validation without knowing, or being able to learn, a list of users' email addresses. Our construction uses standardized cryptography for most components, and it has been deployed in production at the secure matching system. As a building block toward our main construction, we design a new cryptographic primitive that may be of independent interest: an oblivious pseudorandom function that can either have a fully-private input or a partially-public input, and that reaches the same output either way. This primitive allows us to perform online rate limiting for account recovery attempts, without imposing a bound on the creation of new accounts. We provide an open-source implementation of this primitive and provide evaluation results showing that the end-to-end interaction time takes 8.4-60.4 ms in fully-private input mode and 3.1-41.2 ms in partially-public input mode. 
    more » « less
  4. Keystroke dynamics are a powerful behavioral biometric capable of determining user identity and for continuous authentication. It is an unobtrusive method that can complement an existing security system such as a password scheme and provides continuous user authentication. Existing methods record all keystrokes and use n-graphs that measure the timing between consecutive keystrokes to distinguish between users. Current state-of-the-art algorithms report EER’s of 7.5% or higher with 1000 characters. With 1000 characters it takes a longer time to detect an imposter and significant damage could be done. In this paper, we investigate how quickly a user is authenticated or how many digraphs are required to accurately detect an imposter in an uncontrolled free-text environment. We present and evaluate the effectiveness of three distance metrics individually and fused with each other. We show that with just 100 digraphs, about the length of a single sentence, we achieve an EER of 35.3%. At 200 digraphs the EER drops to 15.3%. With more digraphs, the performance continues to steadily improve. With 1000 digraphs the EER drops to 3.6% which is an improvement over the state-of-the-art. 
    more » « less
  5. null (Ed.)
    In the ever-changing world of computer security and user authentication, the username/password standard is becoming increasingly outdated. Using the same username and password across multiple accounts and websites leaves a user open to vulnerabilities, and the need to remember multiple usernames and passwords feels very unnecessary in the current digital age. Authentication methods of the future need to be reliable and fast, while maintaining the ability to provide secure access. Augmenting traditional username-password standard with face biometric is proposed in the literature to enhance the user authentication. However, this technique still needs an extensive evaluation study to show how reliable and effective it will be under different settings. Local Binary Pattern (LBP) is a discrete yet powerful texture classification scheme, which works particularly well with image classification for facial recognition. The system proposed here strives to examine and test various LBP configurations to determine their image classification accuracy. The most favorable configurations of LBP should be examined as a potential way to augment the current username and password standard by increasing their security with facial biometrics. 
    more » « less