skip to main content


Title: A differential emissivity imaging technique for measuring hydrometeor mass and type
Abstract. The Differential Emissivity Imaging Disdrometer (DEID) is a new evaporation-based optical and thermal instrument designed to measure the mass, size, density and type of individual hydrometeors as well as their bulk properties. Hydrometeor spatial dimensions are measured on a heated metal plate using an infrared camera by exploiting the much higher thermal emissivity of water compared with metal. As a melted hydrometeor evaporates, its mass can be directly related to the loss of heat from the hotplate assuming energy conservation across the hydrometeor. The heat loss required to evaporate a hydrometeor is found to be independent of environmental conditions including ambient wind velocity, moisture level and temperature. The difference in heat loss for snow vs. rain for a given mass offers a method for discriminating precipitation phase. The DEID measures hydrometeors at sampling frequencies of up to 1 Hz with masses and effective diameters greater than 1 µg and 200 µm, respectively, determined by the size of the hotplate and the thermal camera specifications. Measurable snow water equivalent (SWE) precipitation rates range from 0.001 to 200 mm h−1, as validated against a standard weighing bucket. Preliminary field experiment measurements of snow and rain from the winters of 2019 and 2020 provided continuous automated measurements of precipitation rate, snow density and visibility. Measured hydrometeor size distributions agree well with canonical results described in the literature.  more » « less
Award ID(s):
1841870
NSF-PAR ID:
10323155
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Atmospheric Measurement Techniques
Volume:
14
Issue:
11
ISSN:
1867-8548
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. A new precipitation sensor, the Differential Emissivity Imaging Disdrometer (DEID), is used to provide the first continuous measurements of the mass, diameter, and density of individual hydrometeors. The DEID consists of an infrared camera pointed at a heated aluminum plate. It exploits the contrasting thermal emissivity of water and metal to determine individual particle mass by assuming that energy is conserved during the transfer of heat from the plate to the particle during evaporation. Particle density is determined from a combination of particle mass and morphology. A Multi-Angle Snowflake Camera (MASC) was deployed alongside the DEID to provide refined imagery of particle size and shape. Broad consistency is found between derived mass–diameter and density–diameter relationships and those obtained in prior studies. However, DEID measurements show a generally weaker dependence with size for hydrometeor density and a stronger dependence for aggregate snowflake mass. 
    more » « less
  2. Abstract Properties of frozen hydrometeors in clouds remain difficult to sense remotely. Estimates of number concentration, distribution shape, ice particle density, and ice water content are essential for connecting cloud processes to surface precipitation. Progress has been made with dual-frequency radars, but validation has been difficult because of lack of particle imaging and sizing observations collocated with the radar measurements. Here, data are used from two airborne profiling (up and down) radars, the W-band Wyoming Cloud Radar and the Ka-band Profiling Radar, allowing for Ka–W-band dual-wavelength ratio (DWR) profiles. The aircraft (the University of Wyoming King Air) also carried a suite of in situ cloud and precipitation probes. This arrangement is optimal for relating the “flight-level” DWR (an average from radar gates below and above flight level) to ice particle size distributions measured by in situ optical array probes, as well as bulk properties such as minimum snow particle density and ice water content. This comparison reveals a strong relationship between DWR and the ice particle median-volume diameter. An optimal range of DWR values ensures the highest retrieval confidence, bounded by the radars’ relative calibration and DWR saturation, found here to be about 2.5–7.5 dB. The DWR-defined size distribution shape is used with a Mie scattering model and an experimental mass–diameter relationship to test retrievals of ice particle concentration and ice water content. Comparison with flight-level cloud-probe data indicate good performance, allowing microphysical interpretations for the rest of the vertical radar transects. 
    more » « less
  3. null (Ed.)
    Abstract. Ground-based measurements of frozen precipitation are heavily influenced by interactions of surface winds with gauge-shield geometry. The Multi-Angle Snowflake Camera (MASC), which photographs hydrometeors in free-fall from three different angles while simultaneously measuring their fall speed, has been used in the field at multiple midlatitude and polar locations both with and without wind shielding. Here, we present an analysis of Arctic field observations – with and without a Belfort double Alter shield – and compare the results to computational fluid dynamics (CFD) simulations of the airflow and corresponding particle trajectories around the unshielded MASC. MASC-measured fall speeds compare well with Ka-band Atmospheric Radiation Measurement (ARM) Zenith Radar (KAZR) mean Doppler velocities only when winds are light (≤5ms-1) and the MASC is shielded. MASC-measured fall speeds that do not match KAZR-measured velocities tend to fall below a threshold value that increases approximately linearly with wind speed but is generally <0.5ms-1. For those events with wind speeds ≤1.5ms-1, hydrometeors fall with an orientation angle mode of 12∘ from the horizontal plane, and large, low-density aggregates are as much as 5 times more likely to be observed. Simulations in the absence of a wind shield show a separation of flow at the upstream side of the instrument, with an upward velocity component just above the aperture, which decreases the mean particle fall speed by 55 % (74 %) for a wind speed of 5 m s−1 (10 m s−1). We conclude that accurate MASC observations of the microphysical, orientation, and fall speed characteristics of snow particles require shielding by a double wind fence and restriction of analysis to events where winds are light (≤5ms-1). Hydrometeors do not generally fall in still air, so adjustments to these properties' distributions within natural turbulence remain to be determined. 
    more » « less
  4. Abstract

    Detailed ground‐based observations of snow are scarce in remote regions, such as the Arctic. Here, Multi‐Angle Snowflake Camera measurements of over 55,000 solid hydrometeors—obtained during a two‐year period from August 2016 to August 2018 at Oliktok Point, Alaska—are analyzed and compared to similar measurements from an earlier experiment at Alta, Utah. In general, distributions of hydrometeor fall speed, fall orientation, aspect ratio, flatness, and complexity (i.e., riming degree) were observed to be very similar between the two locations, except that Arctic hydrometeors tended to be smaller. In total, the slope parameter defining a negative exponential of the size distribution was approximately 50% steeper in the Arctic as at Alta. Sixty‐six percent of particles were observed to be rimed or moderately rimed with some suggestion that riming is favored by weak boundary layer stability. On average, the fall speed of rimed particles was not notably different from aggregates. However, graupel density and fall speed increase as cloud temperatures approach the melting point.

     
    more » « less
  5. Abstract

    The isotopic composition of precipitation (δ18O, δ2H, and δ17O) is affected by evaporation and exchange as hydrometeors descend. These processes can significantly alter the isotopic ratio of precipitation relative to its initial condensation state in the cloud yet are exceedingly difficult to study in situ. The most widely utilized model for droplet‐atmosphere exchange was derived from controlled experiments where droplets were suspended by forced air in a narrow glass tube‐ a design that manipulated the structure of the boundary layer around the droplet. Here, we provide a novel experimental test of atmosphere‐hydrometeor isotopic exchange using the mechanism of acoustic levitation, where sound waves are projected vertically to levitate droplets in free‐flowing ambient air. We present results from a series of droplet levitation experiments where the droplets' surface temperatures were measured by a thermal camera and the background atmospheric isotope concentration was measured via cavity‐ringdown spectroscopy, providing a high degree of constraint on the fractionation conditions. We show that isotope enrichment of the suspended droplets met first order expectations based on existing models. However, to account for the slope of δ18O versus δ2H (i.e., the meteoric water line) and deuterium excess of the droplets as they evolved, we had to modify the existing model for droplet‐atmosphere exchange to account for the fact that some portion of the evaporative flux from the droplet remained present in the boundary layer around the droplet leading to an evolving feedback between droplet and the atmosphere‐that is, a quasi closed‐system effect. The isotopic enrichment of the boundary layer surrounding the droplet as a consequence of the closed‐system dynamics, drives more rapid δ18O isotope enrichment relative to δ2H of the droplet compared to what is predicted using an open system model. Although these were controlled experiments, they illustrate important dynamics regarding the isotopic signature of feedbacks between droplet evaporation and atmospheric humidity.

     
    more » « less