This study compared drop size distribution (DSD) measurements on the surface, the corresponding properties, and the precipitation modes among three deep convective regions within the Americas. The measurement compilation corresponded to two sites in the midlatitudes: the U.S. Southern Great Plains and Córdoba Province in subtropical South America, as well as to one site in the tropics: Manacapuru in central Amazonia; these are all areas where intense rain-producing systems contribute to the majority of rainfall in the Americas’ largest river basins. This compilation included two types of disdrometers (Parsivel and 2D-Video Disdrometer) that were used at the midlatitude sites and one type of disdrometer (Parsivel) that was deployed at the tropical site. The distributions of physical parameters (such as rain rate R, mass-weighted mean diameter Dm, and normalized droplet concentration Nw) for the raindrop spectra without rainfall mode classification seemed similar, except for the much broader Nw distributions in Córdoba. The raindrop spectra were then classified into a light precipitation mode and a precipitation mode by using a cutoff at 0.5 mm h−1 based on previous studies that characterized the full drop size spectra. These segregated rain modes are potentially unique relative to previously studied terrain-influenced sites. In the light precipitation and precipitation modes, the dominant higher frequency observed in a broad distribution of Nw in both types of disdrometers and the identification of shallow light precipitation in vertically pointing cloud radar data represent unique characteristics of the Córdoba site relative to the others. As a result, the co-variability between the physical parameters of the DSD indicates that the precipitation observed in Córdoba may confound existing methods of determining the rain type by using the drop size distribution.
more »
« less
Idealized simulation study of the relationship of disdrometer sampling statistics with the precision of precipitation rate measurement
Abstract. Due to the discretized nature of rain, the measurement of a continuous precipitation rate by disdrometers is subject to statistical sampling errors. Here, Monte Carlo simulations are employed to obtain the precision of rain detection and rate as a function of disdrometer collection area and compared with World Meteorological Organization guidelines for a 1 min sample interval and 95 % probability. To meet these requirements, simulations suggest that measurements of light rain with rain rates R ≤ 0.50 mm h−1 require a collection area of at least 6 cm × 6 cm, and for R = 1 mm h−1, the minimum collection area is 13 cm × 13 cm. For R = 0.01 mm h−1, a collection area of 2 cm × 2 cm is sufficient to detect a single drop. Simulations are compared with field measurements using a new hotplate device, the Differential Emissivity Imaging Disdrometer. The field results suggest an even larger plate may be required to meet the stated accuracy, likely in part due to non-Poissonian hydrometeor clustering.
more »
« less
- Award ID(s):
- 1841870
- PAR ID:
- 10323154
- Date Published:
- Journal Name:
- Atmospheric Measurement Techniques
- Volume:
- 14
- Issue:
- 12
- ISSN:
- 1867-8548
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract. The Differential Emissivity Imaging Disdrometer (DEID) is a new evaporation-based optical and thermal instrument designed to measure the mass, size, density and type of individual hydrometeors as well as their bulk properties. Hydrometeor spatial dimensions are measured on a heated metal plate using an infrared camera by exploiting the much higher thermal emissivity of water compared with metal. As a melted hydrometeor evaporates, its mass can be directly related to the loss of heat from the hotplate assuming energy conservation across the hydrometeor. The heat loss required to evaporate a hydrometeor is found to be independent of environmental conditions including ambient wind velocity, moisture level and temperature. The difference in heat loss for snow vs. rain for a given mass offers a method for discriminating precipitation phase. The DEID measures hydrometeors at sampling frequencies of up to 1 Hz with masses and effective diameters greater than 1 µg and 200 µm, respectively, determined by the size of the hotplate and the thermal camera specifications. Measurable snow water equivalent (SWE) precipitation rates range from 0.001 to 200 mm h−1, as validated against a standard weighing bucket. Preliminary field experiment measurements of snow and rain from the winters of 2019 and 2020 provided continuous automated measurements of precipitation rate, snow density and visibility. Measured hydrometeor size distributions agree well with canonical results described in the literature.more » « less
-
null (Ed.)The availability of high quality surface observations of precipitation and volume observations by polarimetric operational radars make it possible to constrain, evaluate, and validate numerical models with a wide variety of microphysical schemes. In this article, a novel particle-based Monte-Carlo microphysical model (called McSnow) is used to simulate the outer rain bands of Hurricane Dorian which traversed the densely instrumented precipitation research facility operated by NASA at Wallops Island, Virginia. The rain bands showed steady stratiform vertical profiles with radar signature of dendritic growth layers near −15 °C and peak reflectivity in the bright band of 55 dBZ along with polarimetric signatures of wet snow with sizes inferred to exceed 15 mm. A 2D-video disdrometer measured frequent occurrences of large drops >5 mm and combined with an optical array probe the drop size distribution was well-documented in spite of uncertainty for drops <0.5 mm due to high wind gusts and turbulence. The 1D McSnow control run and four numerical experiments were conducted and compared with observations. One of the main findings is that even at the moderate rain rate of 10 mm/h collisional breakup is essential for the shape of the drop size distribution.more » « less
-
null (Ed.)The availability of high quality surface observations of precipitation and volume observations by polarimetric operational radars make it possible to constrain, evaluate, and validate numerical models with a wide variety of microphysical schemes. In this article, a novel particle-based Monte-Carlo microphysical model (called McSnow) is used to simulate the outer rain bands of Hurricane Dorian which traversed the densely instrumented precipitation research facility operated by NASA at Wallops Island, Virginia. The rain bands showed steady stratiform vertical profiles with radar signature of dendritic growth layers near −15 °C and peak reflectivity in the bright band of 55 dBZ along with polarimetric signatures of wet snow with sizes inferred to exceed 15 mm. A 2D-video disdrometer measured frequent occurrences of large drops >5 mm and combined with an optical array probe the drop size distribution was well-documented in spite of uncertainty for drops <0.5 mm due to high wind gusts and turbulence. The 1D McSnow control run and four numerical experiments were conducted and compared with observations. One of the main findings is that even at the moderate rain rate of 10 mm/h collisional breakup is essential for the shape of the drop size distributionmore » « less
-
Abstract Raindrop size distributions (DSD) and rain rate have been estimated from polarimetric radar data using different approaches with the accuracy depending on the errors both in the radar measurements and the estimation methods. Herein, a deep neural network (DNN) technique was utilized to improve the estimation of the DSD and rain rate by mitigating these errors. The performance of this approach was evaluated using measurements from a two-dimensional video disdrometer (2DVD) at the Kessler Atmospheric and Ecological Field Station in Oklahoma as ground truth with the results compared against conventional estimation methods for the period 2006–17. Physical parameters (mass-/volume-weighted diameter and liquid water content), rain rate, and polarimetric radar variables (including radar reflectivity and differential reflectivity) were obtained from the DSD data. Three methods—physics-based inversion, empirical formula, and DNN—were applied to two different temporal domains (instantaneous and rain-event average) with three diverse error assumptions (fitting, measurement, and model errors). The DSD retrievals and rain estimates from 18 cases were evaluated by calculating the bias and root-mean-squared error (RMSE). DNN produced the best performance for most cases, with up to a 5% reduction in RMSE when model errors existed. DSD and rain estimated from a nearby polarimetric radar using the empirical and DNN methods were well correlated with the disdrometer observations; the rain-rate estimate bias of the DNN was significantly reduced (3.3% in DNN vs 50.1% in empirical). These results suggest that DNN has advantages over the physics-based and empirical methods in retrieving rain microphysics from radar observations.more » « less
An official website of the United States government

