skip to main content


Search for: All records

Award ID contains: 1841870

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Rimed precipitation growth can efficiently remove moisture and aerosols from the boundary layer, yet thin low‐level Arctic mixed‐phase clouds are generally thought to precipitate pristine and aggregated ice crystals. Here we present automated surface photographic measurements showing that only 34% of precipitation particles exhibit negligible riming and that graupel particlesin diameter commonly fall from clouds with liquid water paths less than 50 g m−2. Analyses indicate that significant riming enhancement can occur provided sustained updrafts of 0.4 m s−1, consistent with those measured in Arctic clouds. A Lagrangian numerical simulation that tracks falling particles suggests that similar updraft speeds can account for about one half of the observed riming enhancement. Riming enhancement appears particularly likely when weak temperature inversions are observed at cloud top, but a full explanation remains to be determined.

     
    more » « less
  2. Abstract

    Detailed ground‐based observations of snow are scarce in remote regions, such as the Arctic. Here, Multi‐Angle Snowflake Camera measurements of over 55,000 solid hydrometeors—obtained during a two‐year period from August 2016 to August 2018 at Oliktok Point, Alaska—are analyzed and compared to similar measurements from an earlier experiment at Alta, Utah. In general, distributions of hydrometeor fall speed, fall orientation, aspect ratio, flatness, and complexity (i.e., riming degree) were observed to be very similar between the two locations, except that Arctic hydrometeors tended to be smaller. In total, the slope parameter defining a negative exponential of the size distribution was approximately 50% steeper in the Arctic as at Alta. Sixty‐six percent of particles were observed to be rimed or moderately rimed with some suggestion that riming is favored by weak boundary layer stability. On average, the fall speed of rimed particles was not notably different from aggregates. However, graupel density and fall speed increase as cloud temperatures approach the melting point.

     
    more » « less
  3. Free, publicly-accessible full text available June 1, 2024
  4. Abstract. The Differential Emissivity Imaging Disdrometer (DEID) is a new evaporation-based optical and thermal instrument designed to measure the mass, size, density and type of individual hydrometeors as well as their bulk properties. Hydrometeor spatial dimensions are measured on a heated metal plate using an infrared camera by exploiting the much higher thermal emissivity of water compared with metal. As a melted hydrometeor evaporates, its mass can be directly related to the loss of heat from the hotplate assuming energy conservation across the hydrometeor. The heat loss required to evaporate a hydrometeor is found to be independent of environmental conditions including ambient wind velocity, moisture level and temperature. The difference in heat loss for snow vs. rain for a given mass offers a method for discriminating precipitation phase. The DEID measures hydrometeors at sampling frequencies of up to 1 Hz with masses and effective diameters greater than 1 µg and 200 µm, respectively, determined by the size of the hotplate and the thermal camera specifications. Measurable snow water equivalent (SWE) precipitation rates range from 0.001 to 200 mm h−1, as validated against a standard weighing bucket. Preliminary field experiment measurements of snow and rain from the winters of 2019 and 2020 provided continuous automated measurements of precipitation rate, snow density and visibility. Measured hydrometeor size distributions agree well with canonical results described in the literature. 
    more » « less
  5. null (Ed.)
    Abstract. Ground-based measurements of frozen precipitation are heavily influenced by interactions of surface winds with gauge-shield geometry. The Multi-Angle Snowflake Camera (MASC), which photographs hydrometeors in free-fall from three different angles while simultaneously measuring their fall speed, has been used in the field at multiple midlatitude and polar locations both with and without wind shielding. Here, we present an analysis of Arctic field observations – with and without a Belfort double Alter shield – and compare the results to computational fluid dynamics (CFD) simulations of the airflow and corresponding particle trajectories around the unshielded MASC. MASC-measured fall speeds compare well with Ka-band Atmospheric Radiation Measurement (ARM) Zenith Radar (KAZR) mean Doppler velocities only when winds are light (≤5ms-1) and the MASC is shielded. MASC-measured fall speeds that do not match KAZR-measured velocities tend to fall below a threshold value that increases approximately linearly with wind speed but is generally <0.5ms-1. For those events with wind speeds ≤1.5ms-1, hydrometeors fall with an orientation angle mode of 12∘ from the horizontal plane, and large, low-density aggregates are as much as 5 times more likely to be observed. Simulations in the absence of a wind shield show a separation of flow at the upstream side of the instrument, with an upward velocity component just above the aperture, which decreases the mean particle fall speed by 55 % (74 %) for a wind speed of 5 m s−1 (10 m s−1). We conclude that accurate MASC observations of the microphysical, orientation, and fall speed characteristics of snow particles require shielding by a double wind fence and restriction of analysis to events where winds are light (≤5ms-1). Hydrometeors do not generally fall in still air, so adjustments to these properties' distributions within natural turbulence remain to be determined. 
    more » « less
  6. Abstract. Due to the discretized nature of rain, the measurement of a continuous precipitation rate by disdrometers is subject to statistical sampling errors. Here, Monte Carlo simulations are employed to obtain the precision of rain detection and rate as a function of disdrometer collection area and compared with World Meteorological Organization guidelines for a 1 min sample interval and 95 % probability. To meet these requirements, simulations suggest that measurements of light rain with rain rates R ≤ 0.50 mm h−1 require a collection area of at least 6 cm × 6 cm, and for R = 1 mm h−1, the minimum collection area is 13 cm × 13 cm. For R = 0.01 mm h−1, a collection area of 2 cm × 2 cm is sufficient to detect a single drop. Simulations are compared with field measurements using a new hotplate device, the Differential Emissivity Imaging Disdrometer. The field results suggest an even larger plate may be required to meet the stated accuracy, likely in part due to non-Poissonian hydrometeor clustering. 
    more » « less
  7. Abstract. A new precipitation sensor, the Differential Emissivity Imaging Disdrometer (DEID), is used to provide the first continuous measurements of the mass, diameter, and density of individual hydrometeors. The DEID consists of an infrared camera pointed at a heated aluminum plate. It exploits the contrasting thermal emissivity of water and metal to determine individual particle mass by assuming that energy is conserved during the transfer of heat from the plate to the particle during evaporation. Particle density is determined from a combination of particle mass and morphology. A Multi-Angle Snowflake Camera (MASC) was deployed alongside the DEID to provide refined imagery of particle size and shape. Broad consistency is found between derived mass–diameter and density–diameter relationships and those obtained in prior studies. However, DEID measurements show a generally weaker dependence with size for hydrometeor density and a stronger dependence for aggregate snowflake mass. 
    more » « less
  8. The inertial response of a particle to turbulent flows is a problem of relevance to a wide range of environmental and engineering problems. The equation most often used to describe the force balance is the Maxey-Riley equation, which includes in addition to buoyancy and steady drag forces, an unsteady Basset drag force related to past particle acceleration. Here we provide a historical review of how the Maxey-Riley equation was developed and how it is only suited for studies where the Reynolds number is less than unity. Revisiting the innovative mathematical methods employed by Basset (1888), we introduce an alternative formulation for the unsteady drag for application to a broader range of particle motions. While the Basset unsteady drag is negligible at higher Reynolds numbers, the revised unsteady drag is not. 
    more » « less