skip to main content


Title: Cloud-Cluster Architecture for Detection in Intermittently Connected Sensor Networks
We consider a centralized detection problem where sensors experience noisy measurements and intermittent connectivity to a centralized fusion center. The sensors may collaborate locally within predefined sensor clusters and fuse their noisy sensor data to reach a common local estimate of the detected event in each cluster. The connectivity of each sensor cluster is intermittent and depends on the available communication opportunities of the sensors to the fusion center. Upon receiving the estimates from all the connected sensor clusters the fusion center fuses the received estimates to make a final determination regarding the occurrence of the event across the deployment area. We refer to this hybrid communication scheme as a cloud-cluster architecture. We propose a method for optimizing the decision rule for each cluster and analyzing the expected detection performance resulting from our hybrid scheme. Our method is tractable and addresses the high computational complexity caused by heterogeneous sensors’ and clusters’ detection quality, heterogeneity in their communication opportunities, and nonconvexity of the loss function. Our analysis shows that clustering the sensors provides resilience to noise in the case of low sensor communication probability with the cloud. For larger clusters, a steep improvement in detection performance is possible even for a low communication probability by using our cloud-cluster architecture.  more » « less
Award ID(s):
2114733
PAR ID:
10323174
Author(s) / Creator(s):
Date Published:
Journal Name:
ArXivorg
ISSN:
2331-8422
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Quickest change detection in a sensor network is considered where each sensor observes a sequence of random variables and transmits its local information on the observations to a fusion center. At an unknown point in time, the distribution of the observations at all sensors changes. The objective is to detect the change in distribution as soon as possible, subject to a false alarm constraint. We consider minimax formulations for this problem and propose a new approach where transmissions are ordered and halted when sufficient information is accumulated at the fusion center. We show that the proposed approach can achieve the optimal performance equivalent to the centralized cumulative sum (CUSUM) algorithm while requiring fewer sensor transmissions. Numerical results for a shift in mean of independent and identically distributed Gaussian observations show significant communication savings for the case where the change seldom occurs which is frequently true in many important applications. 
    more » « less
  2. This article presents a new method to solve a dynamic sensor fusion problem. We consider a large number of remote sensors which measure a common Gauss–Markov process. Each sensor encodes and transmits its measurement to a data fusion center through a resource restricted communication network. The communication cost incurred by a given sensor is quantified as the expected bitrate from the sensor to the fusion center. We propose an approach that attempts to minimize a weighted sum of these communication costs subject to a constraint on the state estimation error at the fusion center. We formulate the problem as a difference-of-convex program and apply the convex-concave procedure (CCP) to obtain a heuristic solution. We consider a 1D heat transfer model and a model for 2D target tracking by a drone swarm for numerical studies. Through these simulations, we observe that our proposed approach has a tendency to assign zero data rate to unnecessary sensors indicating that our approach is sparsity-promoting, and an effective sensor selection heuristic. 
    more » « less
  3. Abstract

    This article presents a new method to solve a dynamic sensor fusion problem. We consider a large number of remote sensors which measure a common Gauss–Markov process. Each sensor encodes and transmits its measurement to a data fusion center through a resource restricted communication network. The communication cost incurred by a given sensor is quantified as the expected bitrate from the sensor to the fusion center. We propose an approach that attempts to minimize a weighted sum of these communication costs subject to a constraint on the state estimation error at the fusion center. We formulate the problem as a difference‐of‐convex program and apply the convex‐concave procedure (CCP) to obtain a heuristic solution. We consider a 1D heat transfer model and a model for 2D target tracking by a drone swarm for numerical studies. Through these simulations, we observe that our proposed approach has a tendency to assign zero data rate to unnecessary sensors indicating that our approach is sparsity‐promoting, and an effective sensor selection heuristic.

     
    more » « less
  4. We consider a dynamic sensor fusion problem where a large number of remote sensors observe a common Gauss-Markov process and the observations are transmitted to a fusion center over a resource constrained communication network. The design objective is to allocate an appropriate data rate to each sensor in such a way that the total data traffic to the fusion center is minimized, subject to a constraint on the fusion center's state estimation error covariance. We show that the problem can be formulated as a difference-of-convex program, to which we apply the convex-concave procedure (CCP) and the alternating direction method of multiplier (ADMM). Through a numerical study on a truss bridge sensing system, we observe that our algorithm tends to allocate zero data rate to unneeded sensors, implying that the proposed method is an effective heuristic for sensor selection. 
    more » « less
  5. null (Ed.)
    A quickest change detection problem is considered in a sensor network with observations whose statistical dependency structure across the sensors before and after the change is described by a decomposable graphical model (DGM). Distributed computation methods for this problem are proposed that are capable of producing the optimum centralized test statistic. The DGM leads to the proper way to collect nodes into local groups equivalent to cliques in the graph, such that a clique statistic which summarizes all the clique sensor data can be computed within each clique. The clique statistics are transmitted to a decision maker to produce the optimum centralized test statistic. In order to further improve communication efficiency, an ordered transmission approach is proposed where transmissions of the clique statistics to the fusion center are ordered and then adaptively halted when sufficient information is accumulated. This procedure is always guaranteed to provide the optimal change detection performance, despite not transmitting all the statistics from all the cliques. A lower bound on the average number of transmissions saved by ordered transmissions is provided and for the case where the change seldom occurs the lower bound approaches approximately half the number of cliques provided a well behaved distance measure between the distributions of the sensor observations before and after the change is sufficiently large. We also extend the approach to the case when the graph structure is different under each hypothesis. Numerical results show significant savings using the ordered transmission approach and validate the theoretical findings. 
    more » « less