Iron and nickel-based perovskite oxides have proven promising for the oxygen evolution reaction (OER) in alkaline environments, as their catalytic overpotentials rival precious metal catalysts when the band alignment is tuned through substitutional doping or alloying. Here, we report the engineering of band alignment in LaFeO3/LaNiO3 (LFO/LNO) heterostructures via interfacial doping that yields greatly enhanced catalytic performance. The 0.2 eV offset (VBO) between the Fermi level in metallic LNO and the valence band in semiconducting LFO that we predict using density functional theory makes LFO a p-type semiconductor, resulting in significantly lower barriers for hole transport through LFO compared to the intrinsic material. Experimental band alignment measured with in situ x-ray photoelectron spectroscopy of epitaxial LFO/LNO heterostructures confirms these predictions, producing a measured VBO of 0.3(1) eV. Furthermore, OER catalytic measurements on these samples in the alkaline solution show an increase in catalytic current density by a factor of ∼275 compared to LFO grown on n-type Nb-doped SrTiO3. These results demonstrate the power of tuning band alignments through interfacial band engineering for improved catalytic performance of oxides.
- PAR ID:
- 10323232
- Date Published:
- Journal Name:
- Journal of Materials Chemistry A
- Volume:
- 10
- Issue:
- 4
- ISSN:
- 2050-7488
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Based on the coincident onsets of oxygen evolution reaction (OER) and metal dissolution for many metal‐oxide catalysts it was suggested that OER triggers dissolution. It is believed that both processes share common intermediates, yet exact mechanistic details remain largely unknown. For example, there is still no clear understanding as to why rutile IrO2exhibits such an exquisite stability among water‐splitting electrocatalysts. Here, we employ density functional theory calculations to analyze interactions between water and the (110) surface of rutile RuO2and IrO2as a response to oxygen evolution involving lattice oxygen species. We observe that these oxides display qualitatively different interfacial behavior that should have important implications for their electrochemical stability. Specifically, it is found that IrO2(110) becomes further stabilized under OER conditions due to the tendency to form highly stable low oxidation state Ir(III) species. In contrast, Ru species at RuO2(110) are prone to facile reoxidation by solution water. This should facilitate the formation of high Ru oxidation state intermediates (>IV) accelerating surface restructuring and metal dissolution.
-
Water electrolysis can use renewable electricity to produce green hydrogen, a portable fuel and sustainable chemical precursor. Improving electrolyzer efficiency hinges on the activity of the oxygen evolution reaction (OER) catalyst. Earth-abundant, ABO3-type perovskite oxides offer great compositional, structural, and electronic tunability, with previous studies showing compositional substitution can increase the OER activity drastically. However, the relationship between the tailored bulk composition and that of the surface, where OER occurs, remains unclear. Here, we study the effects of electrochemical cycling on the OER activity of La 0.5 Sr 0.5 Ni 1-x Fe x O 3-δ (x = 0-0.5) epitaxial films grown by oxide molecular beam epitaxy as a model Sr-containing perovskite oxide. Electrochemical testing and surface-sensitive spectroscopic analyses show Ni segregation, which is affected by electrochemical history, along with surface amorphization, coupled with changes in OER activity. Our findings highlight the importance of surface composition and electrochemical cycling conditions in understanding OER performance on mixed metal oxide catalysts, suggesting common motifs of the active surface with high surface area systems.more » « less
-
Abstract The behavior of polar LaMnO3(LMO) thin films deposited epitaxially on nonpolar SrTiO3(001) (STO) is dictated by both the LMO/STO band alignment and the chemistry of the Mn cation. Using in situ X‐ray photoelectron spectroscopy, the valence band offset (VBO) of LMO/STO heterojunctions is directly measured as a function of thickness, and found that the VBO is 2.5 eV for thicker (≥3 u.c.) films. No evidence of a built‐in electric field in LMO films of any thickness is found. Measurements of the Mn valence by Mn
L ‐edge X‐ray absorption spectroscopy and by spatially resolved electron energy loss spectra in scanning transmission electron microscopy images reveal that Mn2+is present at the LMO surface, but not at the LMO/STO interface. These results are corroborated by density functional theory simulations that confirm a VBO of ≈2.5 eV for both ideal and intermixed interfaces. A model is proposed for the behavior of polar/nonpolar LMO/STO heterojunctions in which the polar catastrophe is alleviated by the formation of oxygen vacancies at the LMO surface. -
Abstract Developing cost effective electrocatalysts with high oxygen evolution reaction (OER) activity is essential for large‐scale application of many electrochemical energy systems. Although the impacts of either lattice strain or oxygen defects on the OER performance of oxide catalysts have been extensively investigated, the effects of both factors are normally treated separately. In this work, the coupled effects of both strain and oxygen deficiency on the electrocatalytic activity of La0.7Sr0.3CoO3−δ(LSC) thin films grown on single crystal substrates (LaAlO3 (LAO) and SrTiO3 (STO)) are investigated. Electrochemical tests show that the OER activities of LSC films are higher under compression than under tension, and are diminished as oxygen vacancies are introduced by vacuum annealing. Both experimental and computational results indicate that the LSC films under tension (e.g., LSC/STO) have larger oxygen deficiency than the films under compression (e.g., LSC/LAO), which attribute to smaller oxygen vacancy formation energy. Such strain‐induced excessive oxygen vacancies in the LSC/STO increases the
eg state occupancy and enlarges the energy gap between the O 2p and Co 3d band, resulting in lower OER activity. Understanding the critical role of strain–defect coupling is important for achieving the rational design of highly active and durable catalysts for energy devices.