skip to main content

Title: Horizons and correlation functions in 2D Schwarzschild-de Sitter spacetime
A bstract Two-dimensional Schwarzschild-de Sitter is a convenient spacetime in which to study the effects of horizons on quantum fields since the spacetime contains two horizons, and the wave equation for a massless minimally coupled scalar field can be solved exactly. The two-point correlation function of a massless scalar is computed in the Unruh state. It is found that the field correlations grow linearly in terms of a particular time coordinate that is good in the future development of the past horizons, and that the rate of growth is equal to the sum of the black hole plus cosmological surface gravities. This time dependence results from additive contributions of each horizon component of the past Cauchy surface that is used to define the state. The state becomes the Bunch-Davies vacuum in the cosmological far field limit. The two point function for the field velocities is also analyzed and a peak is found when one point is between the black hole and cosmological horizons and one point is outside the future cosmological horizon.  more » « less
Award ID(s):
Author(s) / Creator(s):
Date Published:
Journal Name:
Journal of High Energy Physics
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Vereshchagin, G. ; Ruffini, R. (Ed.)
    The symmetric two-point function for a massless, minimally coupled scalar field in the Unruh state is examined for Schwarzschild-de Sitter spacetime in two dimensions. This function grows linearly in terms of a time coordinate that is well-defined on the future black hole and cosmological horizons, when the points are split in the space direction. This type of behavior also occurs in two dimensions for other static black hole spacetimes when the field is in the Unruh state, and at late times it occurs in spacetimes where a black hole forms from the collapse of a null shell. The generalization to the case of the symmetric two-point function in two dimensions for a massive scalar field in Schwarzschild-de Sitter spacetime is discussed. 
    more » « less
  2. Abstract Detailed behaviors of the modes of quantized scalar fields in the Unruh state for various eternal black holes in two dimensions are investigated. It is shown that the late-time behaviors of some of the modes of the quantum fields and of the symmetric two-point function are determined by infrared effects. The nature of these effects depends upon whether there is an effective potential in the mode equation and what form this potential takes. Here, three cases are considered, one with no potential and two with potentials that are nonnegative everywhere and are zero on the event horizon of the black hole and zero at either infinity or the cosmological horizon. Specifically, the potentials are a delta function potential and the potential that occurs for a massive scalar field in Schwarzschild–de Sitter spacetime. In both cases, scattering effects remove infrared divergences in the mode functions that would otherwise arise from the normalization process. When such infrared divergences are removed, it is found that the modes that are positive frequency with respect to the Kruskal time on the past black hole horizon approach zero in the limit that the radial coordinate is fixed and the time coordinate goes to infinity. In contrast, when there is no potential and thus infrared divergences occur, the same modes approach nonzero constant values in the late-time limit when the radial coordinate is held fixed. The behavior of the symmetric two-point function when the field is in the Unruh state is investigated for the case of a delta function potential in certain asymptotically flat black hole spacetimes in two dimensions. The removal of the infrared divergences in the mode functions results in the elimination of terms that grow linearly in time. 
    more » « less
  3. Abstract

    In classical general relativity, the values of fields on spacetime are uniquely determined by their values at an initial time within the domain of dependence of this initial data surface. However, it may occur that the spacetime under consideration extends beyond this domain of dependence, and fields, therefore, are not entirely determined by their initial data. This occurs, for example, in the well-known (maximally) extended Reissner–Nordström or Reissner–Nordström–deSitter (RNdS) spacetimes. The boundary of the region determined by the initial data is called the ‘Cauchy horizon.’ It is located inside the black hole in these spacetimes. The strong cosmic censorship conjecture asserts that the Cauchy horizon does not, in fact, exist in practice because the slightest perturbation (of the metric itself or the matter fields) will become singular there in a sufficiently catastrophic way that solutions cannot be extended beyond the Cauchy horizon. Thus, if strong cosmic censorship holds, the Cauchy horizon will be converted into a ‘final singularity,’ and determinism will hold. Recently, however, it has been found that, classically this is not the case in RNdS spacetimes in a certain range of mass, charge, and cosmological constant. In this paper, we consider a quantum scalar field in RNdS spacetime and show that quantum theory comes to the rescue of strong cosmic censorship. We find that for any state that is nonsingular (i.e., Hadamard) within the domain of dependence, the expected stress-tensor blows up with affine parameter,V, along a radial null geodesic transverse to the Cauchy horizon asTVVC/V2withCindependent of the state andC≠ 0 generically in RNdS spacetimes. This divergence is stronger than in the classical theory and should be sufficient to convert the Cauchy horizon into a singularity through which the spacetime cannot be extended as a (weak) solution of the semiclassical Einstein equation. This behavior is expected to be quite general, although it is possible to haveC= 0 in certain special cases, such as the BTZ black hole.

    more » « less
  4. Vereshchagin, G. ; Ruffini, R. (Ed.)
    A method is presented which allows for the numerical computation of the stress-energy tensor for a quantized massless minimally coupled scalar field in the region outside the event horizon of a 4D Schwarzschild black hole that forms from the collapse of a null shell. This method involves taking the difference between the stress-energy tensor for the in state in the collapsing null shell spacetime and that for the Unruh state in Schwarzschild spacetime. The construction of the modes for the {\it in} vacuum state and the Unruh state is discussed. Applying the method, the renormalized stress-energy tensor in the 2D case has been computed numerically and shown to be in agreement with the known analytic solution. In 4D, the presence of an effective potential in the mode equation causes scattering effects that make the the construction of the in modes more complicated. The numerical computation of the in modes in this case is given. 
    more » « less
  5. BACKGROUND Landau’s Fermi liquid theory provides the bedrock on which our understanding of metals has developed over the past 65 years. Its basic premise is that the electrons transporting a current can be treated as “quasiparticles”—electron-like particles whose effective mass has been modified, typically through interactions with the atomic lattice and/or other electrons. For a long time, it seemed as though Landau’s theory could account for all the many-body interactions that exist inside a metal, even in the so-called heavy fermion systems whose quasiparticle mass can be up to three orders of magnitude heavier than the electron’s mass. Fermi liquid theory also lay the foundation for the first successful microscopic theory of superconductivity. In the past few decades, a number of new metallic systems have been discovered that violate this paradigm. The violation is most evident in the way that the electrical resistivity changes with temperature or magnetic field. In normal metals in which electrons are the charge carriers, the resistivity increases with increasing temperature but saturates, both at low temperatures (because the quantized lattice vibrations are frozen out) and at high temperatures (because the electron mean free path dips below the smallest scattering pathway defined by the lattice spacing). In “strange metals,” by contrast, no saturation occurs, implying that the quasiparticle description breaks down and electrons are no longer the primary charge carriers. When the particle picture breaks down, no local entity carries the current. ADVANCES A new classification of metallicity is not a purely academic exercise, however, as strange metals tend to be the high-temperature phase of some of the best superconductors available. Understanding high-temperature superconductivity stands as a grand challenge because its resolution is fundamentally rooted in the physics of strong interactions, a regime where electrons no longer move independently. Precisely what new emergent phenomena one obtains from the interactions that drive the electron dynamics above the temperature where they superconduct is one of the most urgent problems in physics, attracting the attention of condensed matter physicists as well as string theorists. One thing is clear in this regime: The particle picture breaks down. As particles and locality are typically related, the strange metal raises the distinct possibility that its resolution must abandon the basic building blocks of quantum theory. We review the experimental and theoretical studies that have shaped our current understanding of the emergent strongly interacting physics realized in a host of strange metals, with a special focus on their poster-child: the copper oxide high-temperature superconductors. Experiments are highlighted that attempt to link the phenomenon of nonsaturating resistivity to parameter-free universal physics. A key experimental observation in such materials is that removing a single electron affects the spectrum at all energy scales, not just the low-energy sector as in a Fermi liquid. It is observations of this sort that reinforce the breakdown of the single-particle concept. On the theoretical side, the modern accounts that borrow from the conjecture that strongly interacting physics is really about gravity are discussed extensively, as they have been the most successful thus far in describing the range of physics displayed by strange metals. The foray into gravity models is not just a pipe dream because in such constructions, no particle interpretation is given to the charge density. As the breakdown of the independent-particle picture is central to the strange metal, the gravity constructions are a natural tool to make progress on this problem. Possible experimental tests of this conjecture are also outlined. OUTLOOK As more strange metals emerge and their physical properties come under the scrutiny of the vast array of experimental probes now at our disposal, their mysteries will be revealed and their commonalities and differences cataloged. In so doing, we should be able to understand the universality of strange metal physics. At the same time, the anomalous nature of their superconducting state will become apparent, offering us hope that a new paradigm of pairing of non-quasiparticles will also be formalized. The correlation between the strength of the linear-in-temperature resistivity in cuprate strange metals and their corresponding superfluid density, as revealed here, certainly hints at a fundamental link between the nature of strange metallicity and superconductivity in the cuprates. And as the gravity-inspired theories mature and overcome the challenge of projecting their powerful mathematical machinery onto the appropriate crystallographic lattice, so too will we hope to build with confidence a complete theory of strange metals as they emerge from the horizon of a black hole. Curved spacetime with a black hole in its interior and the strange metal arising on the boundary. This picture is based on the string theory gauge-gravity duality conjecture by J. Maldacena, which states that some strongly interacting quantum mechanical systems can be studied by replacing them with classical gravity in a spacetime in one higher dimension. The conjecture was made possible by thinking about some of the fundamental components of string theory, namely D-branes (the horseshoe-shaped object terminating on a flat surface in the interior of the spacetime). A key surprise of this conjecture is that aspects of condensed matter systems in which the electrons interact strongly—such as strange metals—can be studied using gravity. 
    more » « less