skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Quantum instability of the Cauchy horizon in Reissner–Nordström–deSitter spacetime
Abstract In classical general relativity, the values of fields on spacetime are uniquely determined by their values at an initial time within the domain of dependence of this initial data surface. However, it may occur that the spacetime under consideration extends beyond this domain of dependence, and fields, therefore, are not entirely determined by their initial data. This occurs, for example, in the well-known (maximally) extended Reissner–Nordström or Reissner–Nordström–deSitter (RNdS) spacetimes. The boundary of the region determined by the initial data is called the ‘Cauchy horizon.’ It is located inside the black hole in these spacetimes. The strong cosmic censorship conjecture asserts that the Cauchy horizon does not, in fact, exist in practice because the slightest perturbation (of the metric itself or the matter fields) will become singular there in a sufficiently catastrophic way that solutions cannot be extended beyond the Cauchy horizon. Thus, if strong cosmic censorship holds, the Cauchy horizon will be converted into a ‘final singularity,’ and determinism will hold. Recently, however, it has been found that, classically this is not the case in RNdS spacetimes in a certain range of mass, charge, and cosmological constant. In this paper, we consider a quantum scalar field in RNdS spacetime and show that quantum theory comes to the rescue of strong cosmic censorship. We find that for any state that is nonsingular (i.e., Hadamard) within the domain of dependence, the expected stress-tensor blows up with affine parameter,V, along a radial null geodesic transverse to the Cauchy horizon asTVV∼C/V2withCindependent of the state andC≠ 0 generically in RNdS spacetimes. This divergence is stronger than in the classical theory and should be sufficient to convert the Cauchy horizon into a singularity through which the spacetime cannot be extended as a (weak) solution of the semiclassical Einstein equation. This behavior is expected to be quite general, although it is possible to haveC= 0 in certain special cases, such as the BTZ black hole.  more » « less
Award ID(s):
1804216
PAR ID:
10360399
Author(s) / Creator(s):
; ;
Publisher / Repository:
IOP Publishing
Date Published:
Journal Name:
Classical and Quantum Gravity
Volume:
37
Issue:
11
ISSN:
0264-9381
Page Range / eLocation ID:
Article No. 115009
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    A bstract The gravitational dual to the grand canonical ensemble of a large N holographic theory is a charged black hole. These spacetimes — for example Reissner- Nordström-AdS — can have Cauchy horizons that render the classical gravitational dynamics of the black hole interior incomplete. We show that a (spatially uniform) deformation of the CFT by a neutral scalar operator generically leads to a black hole with no inner horizon. There is instead a spacelike Kasner singularity in the interior. For relevant deformations, Cauchy horizons never form. For certain irrelevant deformations, Cauchy horizons can exist at one specific temperature. We show that the scalar field triggers a rapid collapse of the Einstein-Rosen bridge at the would-be Cauchy horizon. Finally, we make some observations on the interior of charged dilatonic black holes where the Kasner exponent at the singularity exhibits an attractor mechanism in the low temperature limit. 
    more » « less
  2. Motivated by the strong cosmic censorship conjecture in the presence of matter, we study the Einstein equations coupled with a charged/massive scalar field with spherically symmetric characteristic data relaxing to a Reissner–Nordström event horizon. Contrary to the vacuum case, the relaxation rate is conjectured to be slow (nonintegrable), opening the possibility that the matter fields and the metric coefficients blow up in amplitude at the Cauchy horizon, not just in energy. We show that whether this blow-up in amplitude occurs or not depends on a novel oscillation condition on the event horizon which determines whether or not a resonance is excited dynamically. If the oscillation condition is satisfied, then the resonance is not excited and we show boundedness and continuous extendibility of the matter fields and the metric across the Cauchy horizon. If the oscillation condition is violated, then by the combined effect of slow decay and the resonance being excited, we show that the massive uncharged scalar field blows up in amplitude. In a companion paper, we will show that in that case a novel null contraction singularity forms at the Cauchy horizon, across which the metric is not continuously extendible in the usual sense. Heuristic arguments in the physics literature indicate that the oscillation condition should be satisfied generically on the event horizon. If these heuristics are true, then our result falsifies the continuous-formulation of strong cosmic censorship by means of oscillation. 
    more » « less
  3. null (Ed.)
    A bstract It is well known that an identical pair of extremal Reissner-Nordström black holes placed a large distance apart will exert no force on each other. In this paper, I establish that the same result holds in a very large class of two-derivative effective theories containing an arbitrary number of gauge fields and moduli, where the appropriate analog of an extremal Reissner-Nordström black hole is a charged, spherically symmetric black hole with vanishing surface gravity or vanishing horizon area. Analogous results hold for black branes. 
    more » « less
  4. We derive the equations governing the linear stability of Kerr–Newman spacetime to coupled electromagnetic-gravitational perturbations. The equations generalize the celebrated Teukolsky equation for curvature perturbations of Kerr, and the Regge–Wheeler equation for metric perturbations of Reissner–Nordström. Because of the “apparent indissolubility of the coupling between the spin-1 and spin-2 fields”, as put by Chandrasekhar, the stability of Kerr–Newman spacetime cannot be obtained through standard decomposition in modes. Due to the impossibility to decouple the modes of the gravitational and electromagnetic fields, the equations governing the linear stability of Kerr–Newman have not been previously derived. Using a tensorial approach that was applied to Kerr, we produce a set of generalized Regge–Wheeler equations for perturbations of Kerr–Newman, which are suitable for the study of linearized stability by physical space methods. The physical space analysis overcomes the issue of coupling of spin-1 and spin-2 fields and represents the first step towards an analytical proof of the stability of the Kerr–Newman black hole. 
    more » « less
  5. A bstract Two-dimensional Schwarzschild-de Sitter is a convenient spacetime in which to study the effects of horizons on quantum fields since the spacetime contains two horizons, and the wave equation for a massless minimally coupled scalar field can be solved exactly. The two-point correlation function of a massless scalar is computed in the Unruh state. It is found that the field correlations grow linearly in terms of a particular time coordinate that is good in the future development of the past horizons, and that the rate of growth is equal to the sum of the black hole plus cosmological surface gravities. This time dependence results from additive contributions of each horizon component of the past Cauchy surface that is used to define the state. The state becomes the Bunch-Davies vacuum in the cosmological far field limit. The two point function for the field velocities is also analyzed and a peak is found when one point is between the black hole and cosmological horizons and one point is outside the future cosmological horizon. 
    more » « less