skip to main content


Title: Increasing co-occurrence of fine particulate matter and ground-level ozone extremes in the western United States
Wildfires and meteorological conditions influence the co-occurrence of multiple harmful air pollutants including fine particulate matter (PM 2.5 ) and ground-level ozone. We examine the spatiotemporal characteristics of PM 2.5 /ozone co-occurrences and associated population exposure in the western United States (US). The frequency, spatial extent, and temporal persistence of extreme PM 2.5 /ozone co-occurrences have increased significantly between 2001 and 2020, increasing annual population exposure to multiple harmful air pollutants by ~25 million person-days/year. Using a clustering methodology to characterize daily weather patterns, we identify significant increases in atmospheric ridging patterns conducive to widespread PM 2.5 /ozone co-occurrences and population exposure. We further link the spatial extent of co-occurrence to the extent of extreme heat and wildfires. Our results suggest an increasing potential for co-occurring air pollution episodes in the western US with continued climate change.  more » « less
Award ID(s):
1934383
NSF-PAR ID:
10323393
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Science Advances
Volume:
8
Issue:
1
ISSN:
2375-2548
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    As anthropogenic emissions continue to decline and emissions from landscape (wild, prescribed, and agricultural) fires increase across the coming century, the relative importance of landscape‐fire smoke on air quality and health in the United States (US) will increase. Landscape fires are a large source of fine particulate matter (PM2.5), which has known negative impacts on human health. The seasonal and spatial distribution, particle composition, and co‐emitted species in landscape‐fire emissions are different from anthropogenic sources of PM2.5. The implications of landscape‐fire emissions on the sub‐national temporal and spatial distribution of health events and the relative health importance of specific pollutants within smoke are not well understood. We use a health impact assessment with observation‐based smoke PM2.5to determine the sub‐national distribution of mortality and the sub‐national and sub‐annual distribution of asthma morbidity attributable to US smoke PM2.5from 2006 to 2018. We estimate disability‐adjusted life years (DALYs) for PM2.5and 18 gas‐phase hazardous air pollutants (HAPs) in smoke. Although the majority of large landscape fires occur in the western US, we find the majority of mortality (74%) and asthma morbidity (on average 75% across 2006–2018) attributable to smoke PM2.5occurs outside the West, due to higher population density in the East. Across the US, smoke‐attributable asthma morbidity predominantly occurs in spring and summer. The number of DALYs associated with smoke PM2.5is approximately three orders of magnitude higher than DALYs associated with gas‐phase smoke HAPs. Our results indicate awareness and mitigation of landscape‐fire smoke exposure is important across the US.

     
    more » « less
  2. Recent dramatic and deadly increases in global wildfire activity have increased attention on the causes of wildfires, their consequences, and how risk from wildfire might be mitigated. Here we bring together data on the changing risk and societal burden of wildfire in the United States. We estimate that nearly 50 million homes are currently in the wildland–urban interface in the United States, a number increasing by 1 million houses every 3 y. To illustrate how changes in wildfire activity might affect air pollution and related health outcomes, and how these linkages might guide future science and policy, we develop a statistical model that relates satellite-based fire and smoke data to information from pollution monitoring stations. Using the model, we estimate that wildfires have accounted for up to 25% of PM 2.5 (particulate matter with diameter <2.5 μm) in recent years across the United States, and up to half in some Western regions, with spatial patterns in ambient smoke exposure that do not follow traditional socioeconomic pollution exposure gradients. We combine the model with stylized scenarios to show that fuel management interventions could have large health benefits and that future health impacts from climate-change–induced wildfire smoke could approach projected overall increases in temperature-related mortality from climate change—but that both estimates remain uncertain. We use model results to highlight important areas for future research and to draw lessons for policy. 
    more » « less
  3. Abstract

    Increasing fire activity and the associated degradation in air quality in the United States has been indirectly linked to human activity via climate change. In addition, direct attribution of fires to human activities may provide opportunities for near term smoke mitigation by focusing policy, management, and funding efforts on particular ignition sources. We analyze how fires associated with human ignitions (agricultural fires and human-initiated wildfires) impact fire particulate matter under 2.5µm (PM2.5) concentrations in the contiguous United States (CONUS) from 2003 to 2018. We find that these agricultural and human-initiated wildfires dominate fire PM2.5in both a high fire and human ignition year (2018) and low fire and human ignition year (2003). Smoke from these human levers also makes meaningful contributions to total PM2.5(∼5%–10% in 2003 and 2018). Across CONUS, these two human ignition processes account for more than 80% of the population-weighted exposure and premature deaths associated with fire PM2.5. These findings indicate that a large portion of the smoke exposure and impacts in CONUS are from fires ignited by human activities with large mitigation potential that could be the focus of future management choices and policymaking.

     
    more » « less
  4. Abstract

    The southern Lake Michigan region of the United States, home to Chicago, Milwaukee, and other densely populated Midwestern cities, frequently experiences high pollutant episodes with unevenly distributed exposure and health burdens. Using the two‐way coupled Weather Research Forecast and Community Multiscale Air Quality Model (WRF‐CMAQ), we investigate criteria pollutants over a southern Lake Michigan domain using 1.3 and 4 km resolution hindcast simulations. We assess WRF‐CMAQ's performance using data from the National Climatic Data Center and Environmental Protection Agency Air Quality System. Our 1.3 km simulation slightly improves on the 4 km simulation's meteorological and chemical performance while also resolving key details in areas of high exposure and impact, that is, urban environments. At 1.3 km, we find that most air quality‐relevant meteorological components of WRF‐CMAQ perform at or above community benchmarks. WRF‐CMAQ's chemical performance also largely meets community standards, with substantial nuance depending on the performance metric and component assessed. For example, hourly simulated NO2and O3are highly correlated with observations (r > 0.6) while PM2.5is less so (r = 0.4). Similarly, hourly simulated NO2and PM2.5have low biases (<10%), whereas O3biases are larger (>30%). Simulated spatial pollutant patterns show distinct urban‐rural footprints, with urban NO2and PM2.520%–60% higher than rural, and urban O36% lower. We use our 1.3 km simulations to resolve high‐pollution areas within individual urban neighborhoods and characterize seasonal changes in O3regimes across tight spatial gradients. Our findings demonstrate both the benefits and limitations of high‐resolution simulations, particularly over urban settings.

     
    more » « less
  5. Abstract Aim

    Two important environmental hazards for nocturnally migrating birds are artificial light at night (ALAN) and air pollution, with ambient fine particulate matter (PM2.5) considered to be especially harmful. Nocturnally migrating birds are attracted to ALAN during seasonal migration, which could increase exposure to PM2.5. Here, we examine PM2.5concentrations and PM2.5trends and the spatial correlation between ALAN and PM2.5within the geographical ranges of the world’s nocturnally migrating birds.

    Location

    Global.

    Time period

    1998–2018.

    Major taxa studied

    Nocturnally migrating birds.

    Methods

    We intersected a global database of annual mean PM2.5concentrations over a 21‐year period (1998–2018) with the geographical ranges (breeding, non‐breeding and regions of passage) of 225 nocturnally migrating bird species in three migration flyways (Americas,n = 143; Africa–Europe,n = 36; and East Asia–Australia,n = 46). For each species, we estimated PM2.5concentrations and trends and measured the correlation between ALAN and PM2.5, which we summarized by season and flyway.

    Results

    Correlations between ALAN and PM2.5were significantly positive across all seasons and flyways. The East Asia–Australia flyway had the strongest ALAN–PM2.5correlations within regions of passage, the highest PM2.5concentrations across all three seasons and the strongest positive PM2.5trends on the non‐breeding grounds and within regions of passage. The Americas flyway had the strongest negative air pollution trends on the non‐breeding grounds and within regions of passage. The breeding grounds had similarly negative air pollution trends within the three flyways.

    Main conclusions

    The combined threats of ALAN and air pollution are greatest and likely to be increasing within the East Asia–Australia flyway and lowest and likely to be decreasing within the Americas and Africa–Europe flyways. Reversing PM2.5trends in the East Asia–Australia flyway and maintaining negative PM2.5trends in the Americas and Africa–Europe flyways while reducing ALAN levels would likely be beneficial for the nocturnally migrating bird populations in each region.

     
    more » « less