Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract June 2023 witnessed the hottest, largest, and longest‐lasting heatwave across Mexico and Texas between 1940 and 2023. We apply constructed analogs with multiple linear regression models to quantify the contribution of different drivers to daily temperature anomalies during this heatwave. On the hottest day (20 June), circulation, soil moisture, and their interaction explained 3.82°C (90% CI: 2.72–4.91°C) of the 5.42°C observed anomaly with most of the residual attributed to the thermodynamic effects of long‐term warming. Using CESM2‐LENS2, we find that June 2023‐like patterns are not projected to increase in frequency but will become 1.9°C hotter by the mid‐21st century under SSP3‐7.0. The hottest simulated day with these patterns could produce temperatures >50°C (122°F) across south Texas, representing a low‐likelihood yet physically plausible worst‐case scenario that could inform disaster preparedness and adaptation planning.more » « less
-
Abstract Climate change poses growing risks to global agriculture including perennial tree fruit such as apples that hold important nutritional, cultural, and economic value. This study quantifies historical trends in climate metrics affecting apple growth, production, and quality, which remain understudied. Utilizing the high-resolution gridMET dataset, we analyzed trends (1979–2022) in several key metrics across the U.S.—cold degree days, chill portions, last day of spring frost, growing degree days (GDD), extreme heat days (daily maximum temperature >34 °C), and warm nights (daily minimum temperatures >15 °C). We found significant trends across large parts of the U.S. in all metrics, with the spatial patterns consistent with pronounced warming across the western states in summer and winter. Yakima County, WA, Kent County, MI, Wayne County, NY—leading apple-producers—showed significant decreasing trends in cold degree days and increasing trends in GDD and warm fall nights. Yakima county, with over 48 870 acres of apple orchards, showed significant changes in five of the six metrics—earlier last day of spring frost, fewer cold degree days, increasing GDD over the overall growth period, and more extreme heat days and warm nights. These trends could negatively affect apple production by reducing the dormancy period, altering bloom timing, increasing sunburn risk, and diminishing apple appearance and quality. Large parts of the U.S. experience detrimental trends in multiple metrics simultaneously that indicate the potential for compounding negative impacts on the production and quality of apples and other tree fruit, emphasizing the need for developing and adopting adaptation strategies.more » « less
-
Abstract Natural climate phenomena like El Niño Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD) influence the Indian monsoon and thereby the region’s agricultural systems. Understanding their influence can provide seasonal predictability of agricultural production metrics to inform decision-making and mitigate potential food security challenges. Here, we analyze the effects of ENSO and IOD on four agricultural production metrics (production, harvested area, irrigated area, and yields) for rice, maize, sorghum, pearl millet, and finger millet across India from 1968 to 2015. El Niños and positive-IODs are associated with simultaneous reductions in the production and yields of multiple crops. Impacts vary considerably by crop and geography. Maize and pearl millet experience large declines in both production and yields when compared to other grains in districts located in the northwest and southern peninsular regions. Associated with warmer and drier conditions during El Niño, >70% of all crop districts experience lower production and yields. Impacts of positive-IODs exhibit relatively more spatial variability. La Niña and negative-IODs are associated with simultaneous increases in all production metrics across the crops, particularly benefiting traditional grains. Variations in impacts of ENSO and IOD on different cereals depend on where they are grown and differences in their sensitivity to climate conditions. We compare production metrics for each crop relative to rice in overlapping rainfed districts to isolate the influence of climate conditions. Maize production and yields experience larger reductions relative to rice, while pearl millet production and yields also experience reductions relative to rice during El Niños and positive-IODs. However, sorghum experiences enhanced production and harvested areas, and finger millet experiences enhanced production and yields. These findings suggest that transitioning from maize and rice to these traditional cereals could lower interannual production variability associated with natural climate variations.more » « less
-
Abstract The South Asian summer monsoon strongly modulates regional temperature and humidity. While extreme dry heat peaks in the pre‐monsoon season, recent literature suggests that extreme humid heat can continue to build throughout the monsoon season. Here we explore the influence of monsoon onset and subseasonal precipitation variability on the occurrence of extreme wet bulb temperatures (Tw) across South Asia. We find that extreme Tw events often occur on rainy days during the monsoon season. However, the influence of precipitation on Tw varies with the background climatology of surface specific humidity. In climatologically drier areas, positive Tw anomalies tend to occur when precipitation increases due to either early onset or wet spells during the monsoon. In contrast, in climatologically humid areas, positive Tw anomalies occur during periods of suppressed precipitation, including both delayed onset and dry spells during the monsoon.more » « less
-
Abstract Several recent widespread temperature extremes across the United States (U.S.) have been associated with power outages, disrupting access to electricity at times that are critical for the health and well-being of communities. Building resilience to such extremes in our energy infrastructure needs a comprehensive understanding of their spatial and temporal characteristics. In this study, we systematically quantify the frequency, extent, duration, and intensity of widespread temperature extremes and their associated energy demand in the six North American Electric Reliability Corporation regions using ERA5 reanalysis data. We show that every region has experienced hot or cold extremes that affected nearly their entire extent and such events were associated with substantially higher energy demand, resulting in simultaneous stress across the entire electric gird. The western U.S. experienced significant increases in the frequency (123%), extent (32%), duration (55%) and intensity (29%) of hot extremes and Texas experienced significant increases in the frequency (132%) of hot extremes. The frequency of cold extremes has decreased across most regions without substantial changes in other characteristics. Using power outage data, we show that recent widespread extremes in nearly every region have coincided with power outages, and such outages account for between 12%–52% of all weather-related outages in the past decade depending on the region. Importantly, we find that solar potential is significantly higher during widespread hot extremes in all six regions and during widespread cold extremes in five of the six regions. Further, wind potential is significantly higher during widespread hot or cold extremes in at least three regions. Our findings indicate that increased solar and wind capacity could be leveraged to meet the higher demand for energy during such widespread extremes, improving the resilience and reliability of our energy systems in addition to limiting carbon emissions.more » « less
-
Abstract Increases in population exposure to humid heat extremes in agriculturally-dependent areas of the world highlights the importance of understanding how the location and timing of humid heat extremes intersects with labor-intensive agricultural activities. Agricultural workers are acutely vulnerable to heat-related health and productivity impacts as a result of the outdoor and physical nature of their work and by compounding socio-economic factors. Here, we identify the regions, crops, and seasons when agricultural workers experience the highest hazard from extreme humid heat. Using daily maximum wet-bulb temperature data, and region-specific agricultural calendars and cropland area for 12 crops, we quantify the number of extreme humid heat days during the planting and harvesting seasons for each crop between 1979–2019. We find that rice, an extremely labor-intensive crop, and maize croplands experienced the greatest exposure to dangerous humid heat (integrating cropland area exposed to >27 °C wet-bulb temperatures), with 2001–2019 mean rice and maize cropland exposure increasing 1.8 and 1.9 times the 1979–2000 mean exposure, respectively. Crops in socio-economically vulnerable regions, including Southeast Asia, equatorial South America, the Indo-Gangetic Basin, coastal Mexico, and the northern coast of the Gulf of Guinea, experience the most frequent exposure to these extremes, in certain areas exceeding 60 extreme humid heat days per year when crops are being cultivated. They also experience higher trends relative to other world regions, with certain areas exceeding a 15 day per decade increase in extreme humid heat days. Our crop and location-specific analysis of extreme humid heat hazards during labor-intensive agricultural seasons can inform the design of policies and efforts to reduce the adverse health and productivity impacts on this vulnerable population that is crucial to the global food system.more » « less
-
Abstract The impact of extreme heat on crop yields is an increasingly pressing issue given anthropogenic climate warming. However, some of the physical mechanisms involved in these impacts remain unclear, impeding adaptation-relevant insight and reliable projections of future climate impacts on crops. Here, using a multiple regression model based on observational data, we show that while extreme dry heat steeply reduced U.S. corn and soy yields, humid heat extremes had insignificant impacts and even boosted yields in some areas, despite having comparably high dry-bulb temperatures as their dry heat counterparts. This result suggests that conflating dry and humid heat extremes may lead to underestimated crop yield sensitivities to extreme dry heat. Rainfall tends to precede humid but not dry heat extremes, suggesting that multivariate weather sequences play a role in these crop responses. Our results provide evidence that extreme heat in recent years primarily affected yields by inducing moisture stress, and that the conflation of humid and dry heat extremes may lead to inaccuracy in projecting crop yield responses to warming and changing humidity.more » « less
-
Abstract Simultaneous heatwaves affecting multiple regions (referred to as concurrent heatwaves) pose compounding threats to various natural and societal systems, including global food chains, emergency response systems, and reinsurance industries. While anthropogenic climate change is increasing heatwave risks across most regions, the interactions between warming and circulation changes that yield concurrent heatwaves remain understudied. Here, we quantify historical (1979–2019) trends in concurrent heatwaves during the warm season [May–September (MJJAS)] across the Northern Hemisphere mid- to high latitudes. We find a significant increase of ∼46% in the mean spatial extent of concurrent heatwaves and ∼17% increase in their maximum intensity, and an approximately sixfold increase in their frequency. Using self-organizing maps, we identify large-scale circulation patterns (300 hPa) associated with specific concurrent heatwave configurations across Northern Hemisphere regions. We show that observed changes in the frequency of specific circulation patterns preferentially increase the risk of concurrent heatwaves across particular regions. Patterns linking concurrent heatwaves across eastern North America, eastern and northern Europe, parts of Asia, and the Barents and Kara Seas show the largest increases in frequency (∼5.9 additional days per decade). We also quantify the relative contributions of circulation pattern changes and warming to overall observed concurrent heatwave day frequency trends. While warming has a predominant and positive influence on increasing concurrent heatwave frequency, circulation pattern changes have a varying influence and account for up to 0.8 additional concurrent heatwave days per decade. Identifying regions with an elevated risk of concurrent heatwaves and understanding their drivers is indispensable for evaluating projected climate risks on interconnected societal systems and fostering regional preparedness in a changing climate. Significance StatementHeatwaves pose a major threat to human health, ecosystems, and human systems. Simultaneous heatwaves affecting multiple regions can exacerbate such threats. For example, multiple food-producing regions simultaneously undergoing heat-related crop damage could drive global food shortages. We assess recent changes in the occurrence of simultaneous large heatwaves. Such simultaneous heatwaves are 7 times more likely now than 40 years ago. They are also hotter and affect a larger area. Their increasing occurrence is mainly driven by warming baseline temperatures due to global heating, but changes in weather patterns contribute to disproportionate increases over parts of Europe, the eastern United States, and Asia. Better understanding the drivers of weather pattern changes is therefore important for understanding future concurrent heatwave characteristics and their impacts.more » « less
-
Abstract Extreme heat research has largely focused on dry‐heat, while humid‐heat that poses a substantial threat to human‐health remains relatively understudied. Using hourly high‐resolution ERA5 reanalysis and HadISD station data, we provide the first spatially comprehensive, global‐scale characterization of the magnitude, seasonal timing, and frequency of dry‐ and wet‐bulb temperature extremes and their trends. While the peak dry‐ and humid‐heat extreme occurrences often coincide, their timing differs in climatologically wet regions. Since 1979, dry‐ and humid‐heat extremes have become more frequent over most land regions, with the greatest increases in the tropics and Arctic. Humid‐heat extremes have increased disproportionately over populated regions (∼5.0 days per‐person per‐decade) relative to global land‐areas (∼3.6 days per‐unit‐land‐area per‐decade) and population exposure to humid‐heat has increased at a faster rate than to dry‐heat. Our study highlights the need for a multivariate approach to understand and mitigate future harm from heat stress in a warming world.more » « less
-
Free, publicly-accessible full text available April 1, 2026
An official website of the United States government
