- Award ID(s):
- 1855962
- PAR ID:
- 10323516
- Date Published:
- Journal Name:
- Proceedings of the Royal Society B: Biological Sciences
- Volume:
- 289
- Issue:
- 1967
- ISSN:
- 0962-8452
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
BACKGROUND Charles Darwin’s Descent of Man, and Selection in Relation to Sex tackled the two main controversies arising from the Origin of Species: the evolution of humans from animal ancestors and the evolution of sexual ornaments. Most of the book focuses on the latter, Darwin’s theory of sexual selection. Research since supports his conjecture that songs, perfumes, and intricate dances evolve because they help secure mating partners. Evidence is overwhelming for a primary role of both male and female mate choice in sexual selection—not only through premating courtship but also through intimate interactions during and long after mating. But what makes one prospective mate more enticing than another? Darwin, shaped by misogyny and sexual prudery, invoked a “taste for the beautiful” without speculating on the origin of the “taste.” How to explain when the “final marriage ceremony” is between two rams? What of oral sex in bats, cloacal rubbing in bonobos, or the sexual spectrum in humans, all observable in Darwin’s time? By explaining desire through the lens of those male traits that caught his eyes and those of his gender and culture, Darwin elided these data in his theory of sexual evolution. Work since Darwin has focused on how traits and preferences coevolve. Preferences can evolve even if attractive signals only predict offspring attractiveness, but most attention has gone to the intuitive but tenuous premise that mating with gorgeous partners yields vigorous offspring. By focusing on those aspects of mating preferences that coevolve with male traits, many of Darwin’s influential followers have followed the same narrow path. The sexual selection debate in the 1980s was framed as “good genes versus runaway”: Do preferences coevolve with traits because traits predict genetic benefits, or simply because they are beautiful? To the broader world this is still the conversation. ADVANCES Even as they evolve toward ever-more-beautiful signals and healthier offspring, mate-choice mechanisms and courter traits are locked in an arms race of coercion and resistance, persuasion and skepticism. Traits favored by sexual selection often do so at the expense of chooser fitness, creating sexual conflict. Choosers then evolve preferences in response to the costs imposed by courters. Often, though, the current traits of courters tell us little about how preferences arise. Sensory systems are often tuned to nonsexual cues like food, favoring mating signals resembling those cues. And preferences can emerge simply from selection on choosing conspecifics. Sexual selection can therefore arise from chooser biases that have nothing to do with ornaments. Choice may occur before mating, as Darwin emphasized, but individuals mate multiple times and bias fertilization and offspring care toward favored partners. Mate choice can thus occur in myriad ways after mating, through behavioral, morphological, and physiological mechanisms. Like other biological traits, mating preferences vary among individuals and species along multiple dimensions. Some of this is likely adaptive, as different individuals will have different optimal mates. Indeed, mate choice may be more about choosing compatible partners than picking the “best” mate in the absolute sense. Compatibility-based choice can drive or reinforce genetic divergence and lead to speciation. The mechanisms underlying the “taste for the beautiful” determine whether mate choice accelerates or inhibits reproductive isolation. If preferences are learned from parents, or covary with ecological differences like the sensory environment, then choice can promote genetic divergence. If everyone shares preferences for attractive ornaments, then choice promotes gene flow between lineages. OUTLOOK Two major trends continue to shift the emphasis away from male “beauty” and toward how and why individuals make sexual choices. The first integrates neuroscience, genomics, and physiology. We need not limit ourselves to the feathers and dances that dazzled Darwin, which gives us a vastly richer picture of mate choice. The second is that despite persistent structural inequities in academia, a broader range of people study a broader range of questions. This new focus confirms Darwin’s insight that mate choice makes a primary contribution to sexual selection, but suggests that sexual selection is often tangential to mate choice. This conclusion challenges a persistent belief with sinister roots, whereby mate choice is all about male ornaments. Under this view, females evolve to prefer handsome males who provide healthy offspring, or alternatively, to express flighty whims for arbitrary traits. But mate-choice mechanisms also evolve for a host of other reasons Understanding mate choice mechanisms is key to understanding how sexual decisions underlie speciation and adaptation to environmental change. New theory and technology allow us to explicitly connect decision-making mechanisms with their evolutionary consequences. A century and a half after Darwin, we can shift our focus to females and males as choosers, rather than the gaudy by-products of mate choice. Mate choice mechanisms across domains of life. Sensory periphery for stimulus detection (yellow), brain for perceptual integration and evaluation (orange), and reproductive structures for postmating choice among pollen or sperm (teal). ILLUSTRATION: KELLIE HOLOSKI/ SCIENCEmore » « less
-
Abstract Competition for mates can play a critical role in determining reproductive success, shaping phenotypic variation within populations, and influencing divergence. Yet, studies of the role of sexual selection in divergence and speciation have focused disproportionately on mate choice. Here, we synthesize the literature on how mate competition may contribute to speciation and integrate concepts from work on sexual selection within populations—mating systems, ecology, and mate choice. Using this synthesis, we generate testable predictions for how mate competition may contribute to divergence. Then, we identify the extent of existing support for these predictions in the literature with a systematic review of the consequences of mate competition for population divergence across a range of evolutionary, ecological, and geographic contexts. We broadly evaluate current evidence, identify gaps in available data and hypotheses that need testing, and outline promising directions for future work. A major finding is that mate competition may commonly facilitate further divergence after initial divergence has occurred, e.g., upon secondary contact and between allopatric populations. Importantly, current hypotheses for how mate competition contributes to divergence do not fully explain observed patterns. While results from many studies fit predictions of negative frequency-dependent selection, agonistic character displacement, and ecological selection, results from ~30% of studies did not fit existing conceptual models. This review identifies future research aims for scenarios in which mate competition is likely important but has been understudied, including how ecological context and interactions between mate choice and mate competition can facilitate or hinder divergence and speciation.
-
Abstract Parental care is essential to offspring survival in many species. Understanding why males of some species provide care, whereas others do not, has received substantial attention. Previous research has found that sexual selection can favor paternal care, yet we still do not fully understand why sexual selection favors male care in some species but not others. It is also unclear when paternal care versus other preferred male trait(s) will be favored by sexual selection. We hypothesize that sexual selection can interact with basic life history to influence the conditions under which paternal care and/or another preferred male trait will be favored by sexual selection. We used a mathematical approach in which males alone provide parental care and exhibit a non‐care trait that is preferred in mate choice. Using this approach, we demonstrate that life‐history characteristics (stage‐specific mortality, fertilization success, gamete numbers) can interact with sexual selection to influence the evolution of paternal care and/or a preferred non‐care trait. In particular, whether (1) adult mortality, egg mortality, and fertilization success are high versus low and (2) a tradeoff exists between paternal care and a non‐care preferred trait will influence whether selection most strongly favors additional paternal care or a non‐care preferred trait. In general, we would expect strong selection for more male care when it is preferred in mate choice. In some cases, mate preferences for paternal care can inhibit selection for a preferred non‐care trait. Mate preferences for paternal care can also broaden the life‐history conditions under which we would expect the elaboration of male care to occur.
-
Abstract Choosing to mate with an infected partner has several potential fitness costs, including disease transmission and infection-induced reductions in fecundity and parental care. By instead choosing a mate with no, or few, parasites, animals avoid these costs and may also obtain resistance genes for offspring. Within a population, then, the quality of sexually selected ornaments on which mate choice is based should correlate negatively with the number of parasites with which a host is infected (“parasite load”). However, the hundreds of tests of this prediction yield positive, negative, or no correlation between parasite load and ornament quality. Here, we use phylogenetically controlled meta-analysis of 424 correlations from 142 studies on a wide range of host and parasite taxa to evaluate explanations for this ambiguity. We found that ornament quality is weakly negatively correlated with parasite load overall, but the relationship is more strongly negative among ornaments that can dynamically change in quality, such as behavioral displays and skin pigmentation, and thus can accurately reflect current parasite load. The relationship was also more strongly negative among parasites that can transmit during sex. Thus, the direct benefit of avoiding parasite transmission may be a key driver of parasite-mediated sexual selection. No other moderators, including methodological details and whether males exhibit parental care, explained the substantial heterogeneity in our data set. We hope to stimulate research that more inclusively considers the many and varied ways in which parasites, sexual selection, and epidemiology intersect.
-
Abstract Sexual signals often function in species recognition and may also guide mate choice within a species. In noctuid moths, both males and females may exercise mate choice. Females of the tobacco budworm
Chloridea virescens prefer to mate with larger males, but the signal(s) underlying female choice remain unknown. Male hairpencil volatiles are emitted during close range courtship displays. However, previously identified male hairpencil volatiles, namely acetate esters, aldehydes, alcohols, and fatty acids, are not associated with female choice. Recently, two new hairpencil compounds were identified that elicit strong electrophysiological responses in female antennae: methyl salicylate (MeSA) and δ-decalactone. In this study, we investigated the effect of larval diet and adult feeding on MeSA and δ-decalactone content in hairpencils and determined whether these compounds are involved in female choice. We found that larval diet affected MeSA content in hairpencils, but not δ-decalactone. Conversely, adult feeding affected the level of δ-decalactone, but not MeSA: sugar-water feeding increased δ-decalactone content compared to plain water. In two-choice assays, females mated more with males that had higher amounts of δ-decalactone, and less with males with higher amounts of MeSA.