skip to main content


Title: Nickel-catalyzed reductive coupling of unactivated alkyl bromides and aliphatic aldehydes
A mild, convenient coupling of aliphatic aldehydes and unactivated alkyl bromides has been developed. The catalytic system features the use of a common Ni( ii ) precatalyst and a readily available bioxazoline ligand and affords silyl-protected secondary alcohols. The reaction is operationally simple, utilizing Mn as a stoichiometric reductant, and tolerates a wide range of functional groups. The use of 1,5-hexadiene as an additive is an important reaction parameter that provides significant benefits in yield optimizations. Initial mechanistic experiments support a mechanism featuring an alpha-silyloxy Ni species that undergoes formal oxidative addition to the alkyl bromide via a reductive cross-coupling pathway.  more » « less
Award ID(s):
1954939
NSF-PAR ID:
10323520
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Chemical Science
Volume:
12
Issue:
36
ISSN:
2041-6520
Page Range / eLocation ID:
11995 to 12000
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Aryl tosylates are an attractive class of electrophiles for cross‐coupling reactions due to ease of synthesis, low price, and the employment of C−O electrophiles, however, the reactivity of aryl tosylates is low. Herein, we report the Ni‐catalyzed C(sp2)−C(sp3) Kumada cross‐coupling of aryl tosylates with primary and secondary alkyl Grignard reagents. The method delivers valuable alkyl arenes by cross‐coupling with challenging alkyl organometallics possessing β‐hydrogens that are prone to β‐hydride elimination and homo‐coupling. The reaction is catalyzed by an air‐ and moisture stable‐Ni(II) precatalyst. A broad range of electronically‐varied aryl tosylates, including bis‐tosylates, underwent this transformation, and many examples are suitable at mild room temperature conditions. The combination of Ar−X cross‐coupling with the facile Ar−OH activation/cross‐coupling strategy permits for orthogonal cross‐coupling with challenging alkyl organometallics. Furthermore, we demonstrate that the method operates with TON reaching 2000, which is one of the highest turnovers observed to date in Ni‐catalyzed cross‐couplings.

    magnified image

     
    more » « less
  2. Abstract

    Herein, we report four new chiral 1,4,7‐triazacyclononane (TACN) derivatives and their corresponding nickel(II) chloride complexes. All TACN ligands are bearing one chiral N‐substituent and two alkyl (methyl ortert‐butyl) N‐substituents, and we have developed a new synthetic method for the dimethyl‐substituted TACN derivative, in order to prevent the rotational isomers that hinder the cyclization reaction. The nickel complexes change their coordination geometry significantly depending on the steric bulk of the N‐alkyl substituents, from a dinuclear tris(μ‐chloro)dinickel complex to mononuclear Ni‐dichloride and Ni‐chloride complexes. These complexes were then employed in the alkyl‐alkyl Kumada cross‐coupling reaction and revealed that the more sterically hindered ligands produced more homocoupled product rather than the cross‐coupled product, while the mononuclear Ni‐dichloride complex exhibited significantly lower catalytic activity. These chiral complexes were also employed in enantioconvergent cross‐coupling reactions as well, to afford significant enantioenrichment. Overall, the least sterically hindered Ni complex yields the best yields in the alkyl‐alkyl Kumada cross‐coupling reaction among the four complexes investigated, as well as the highest enantioselectivity.

     
    more » « less
  3. Abstract

    There is a pressing need, particularly in the field of drug discovery, for general methods that will enable direct coupling of tertiary alkyl fragments to (hetero)aryl halides. Herein a uniquely powerful and simple set of conditions for achieving this transformation with unparalleled generality and chemoselectivity is disclosed. This new protocol is placed in context with other recently reported methods, applied to simplify the routes of known bioactive building blocks molecules, and scaled up in both batch and flow. The role of pyridine additive as well as the mechanism of this reaction are interrogated through Cyclic Voltammetry studies, titration experiments, control reactions with Ni(0) and Ni(II)‐complexes, and ligand optimization data. Those studies indicate that the formation of a BINAPNi(0) is minimized and the formation of an active pyridine‐stabilized Ni(I) species is sustained during the reaction. Our preliminary mechanistic studies ruled out the involvement of Ni(0) species in this electrochemical cross‐coupling, which is mediated by Ni(I) species via a Ni(I)‐Ni(II)‐Ni(III)‐Ni(I) catalytic cycle.

     
    more » « less
  4. Abstract

    There is a pressing need, particularly in the field of drug discovery, for general methods that will enable direct coupling of tertiary alkyl fragments to (hetero)aryl halides. Herein a uniquely powerful and simple set of conditions for achieving this transformation with unparalleled generality and chemoselectivity is disclosed. This new protocol is placed in context with other recently reported methods, applied to simplify the routes of known bioactive building blocks molecules, and scaled up in both batch and flow. The role of pyridine additive as well as the mechanism of this reaction are interrogated through Cyclic Voltammetry studies, titration experiments, control reactions with Ni(0) and Ni(II)‐complexes, and ligand optimization data. Those studies indicate that the formation of a BINAPNi(0) is minimized and the formation of an active pyridine‐stabilized Ni(I) species is sustained during the reaction. Our preliminary mechanistic studies ruled out the involvement of Ni(0) species in this electrochemical cross‐coupling, which is mediated by Ni(I) species via a Ni(I)‐Ni(II)‐Ni(III)‐Ni(I) catalytic cycle.

     
    more » « less
  5. Abstract

    Nonsteroidal anti-inflammatory drug derivatives (NSAIDs) are an important class of medications. Here we show a visible-light-promoted photoredox/nickel catalyzed approach to construct enantioenriched NSAIDs via a three-component alkyl arylation of acrylates. This reductive cross-electrophile coupling avoids preformed organometallic reagents and replaces stoichiometric metal reductants by an organic reductant (Hantzsch ester). A broad range of functional groups are well-tolerated under mild conditions with high enantioselectivities (up to 93% ee) and good yields (up to 90%). A study of the reaction mechanism, as well as literature precedence, enabled a working reaction mechanism to be presented. Key steps include a reduction of the alkyl bromide to the radical, Giese addition of the alkyl radical to the acrylate and capture of the α-carbonyl radical by the enantioenriched nickel catalyst. Reductive elimination from the proposed Ni(III) intermediate generates the product and forms Ni(I).

     
    more » « less