skip to main content


Title: Catalytic enantioselective reductive domino alkyl arylation of acrylates via nickel/photoredox catalysis
Abstract

Nonsteroidal anti-inflammatory drug derivatives (NSAIDs) are an important class of medications. Here we show a visible-light-promoted photoredox/nickel catalyzed approach to construct enantioenriched NSAIDs via a three-component alkyl arylation of acrylates. This reductive cross-electrophile coupling avoids preformed organometallic reagents and replaces stoichiometric metal reductants by an organic reductant (Hantzsch ester). A broad range of functional groups are well-tolerated under mild conditions with high enantioselectivities (up to 93% ee) and good yields (up to 90%). A study of the reaction mechanism, as well as literature precedence, enabled a working reaction mechanism to be presented. Key steps include a reduction of the alkyl bromide to the radical, Giese addition of the alkyl radical to the acrylate and capture of the α-carbonyl radical by the enantioenriched nickel catalyst. Reductive elimination from the proposed Ni(III) intermediate generates the product and forms Ni(I).

 
more » « less
Award ID(s):
1902509
PAR ID:
10307151
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Volume:
12
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The synthesis and characterization of (tBuPBP)Ni(OAc) (5) by insertion of carbon dioxide into the Ni−C bond of (tBuPBP)NiMe (1) is presented. An unexpected CO2cleavage process involving the formation of new B−O and Ni−CO bonds leads to the generation of a butterfly‐structured tetra‐nickel cluster (tBuPBOP)2Ni4(μ‐CO)2(6). Mechanistic investigation of this reaction indicates a reductive scission of CO2by O‐atom transfer to the boron atom via a cooperative nickel‐boron mechanism. The CO2activation reaction produces a three‐coordinate (tBuP2BO)Ni‐acyl intermediate (A) that leads to a (tBuP2BO)−NiIcomplex (B) via a likely radical pathway. The NiIspecies is trapped by treatment with the radical trap (2,2,6,6‐tetramethylpiperidin‐1‐yl)oxyl (TEMPO) to give (tBuP2BO)NiII2‐TEMPO) (7). Additionally,13C and1H NMR spectroscopy analysis using13C‐enriched CO2provides information about the species involved in the CO2activation process.

     
    more » « less
  2. Abstract

    Herein, we report four new chiral 1,4,7‐triazacyclononane (TACN) derivatives and their corresponding nickel(II) chloride complexes. All TACN ligands are bearing one chiral N‐substituent and two alkyl (methyl ortert‐butyl) N‐substituents, and we have developed a new synthetic method for the dimethyl‐substituted TACN derivative, in order to prevent the rotational isomers that hinder the cyclization reaction. The nickel complexes change their coordination geometry significantly depending on the steric bulk of the N‐alkyl substituents, from a dinuclear tris(μ‐chloro)dinickel complex to mononuclear Ni‐dichloride and Ni‐chloride complexes. These complexes were then employed in the alkyl‐alkyl Kumada cross‐coupling reaction and revealed that the more sterically hindered ligands produced more homocoupled product rather than the cross‐coupled product, while the mononuclear Ni‐dichloride complex exhibited significantly lower catalytic activity. These chiral complexes were also employed in enantioconvergent cross‐coupling reactions as well, to afford significant enantioenrichment. Overall, the least sterically hindered Ni complex yields the best yields in the alkyl‐alkyl Kumada cross‐coupling reaction among the four complexes investigated, as well as the highest enantioselectivity.

     
    more » « less
  3. A mild, convenient coupling of aliphatic aldehydes and unactivated alkyl bromides has been developed. The catalytic system features the use of a common Ni( ii ) precatalyst and a readily available bioxazoline ligand and affords silyl-protected secondary alcohols. The reaction is operationally simple, utilizing Mn as a stoichiometric reductant, and tolerates a wide range of functional groups. The use of 1,5-hexadiene as an additive is an important reaction parameter that provides significant benefits in yield optimizations. Initial mechanistic experiments support a mechanism featuring an alpha-silyloxy Ni species that undergoes formal oxidative addition to the alkyl bromide via a reductive cross-coupling pathway. 
    more » « less
  4. Abstract

    We have developed a reductive carbonylation method by which unactivated alkyl iodides can be hydroxymethylated to provide one‐carbon‐extended alcohol products under Cu‐catalyzed conditions. The method is tolerant of alkyl β‐hydrogen atoms, is robust towards a wide variety of functional groups, and was applied to primary, secondary, and tertiary alkyl iodide substrates. Mechanistic experiments indicate that the transformation proceeds by atom‐transfer carbonylation (ATC) of the alkyl iodide followed in tandem by two CuH‐mediated reductions in rapid succession. This radical mechanism renders the Cu‐catalyzed system complementary to precious‐metal‐catalyzed reductive carbonylation reactions.

     
    more » « less
  5. Abstract

    We have developed a reductive carbonylation method by which unactivated alkyl iodides can be hydroxymethylated to provide one‐carbon‐extended alcohol products under Cu‐catalyzed conditions. The method is tolerant of alkyl β‐hydrogen atoms, is robust towards a wide variety of functional groups, and was applied to primary, secondary, and tertiary alkyl iodide substrates. Mechanistic experiments indicate that the transformation proceeds by atom‐transfer carbonylation (ATC) of the alkyl iodide followed in tandem by two CuH‐mediated reductions in rapid succession. This radical mechanism renders the Cu‐catalyzed system complementary to precious‐metal‐catalyzed reductive carbonylation reactions.

     
    more » « less