skip to main content


Title: Development of a speed invariant deep learning model with application to condition monitoring of rotating machinery
The application of cutting-edge technologies such as AI, smart sensors, and IoT in factories is revolutionizing the manufacturing industry. This emerging trend, so called smart manufacturing, is a collection of various technologies that support decision-making in real-time in the presence of changing conditions in manufacturing activities; this may advance manufacturing competitiveness and sustainability. As a factory becomes highly automated, physical asset management comes to be a critical part of an operational life-cycle. Maintenance is one area where the collection of technologies may be applied to enhance operational reliability using a machine condition monitoring system. Data-driven models have been extensively applied to machine condition data to build a fault detection system. Most existing studies on fault detection were developed under a fixed set of operating conditions and tested with data obtained from that set of conditions. Therefore, variability in a model’s performance from data obtained from different operating settings is not well reported. There have been limited studies considering changing operational conditions in a data-driven model. For practical applications, a model must identify a targeted fault under variable operational conditions. With this in mind, the goal of this paper is to study invariance of model to changing speed via a deep learning method, which can detect a mechanical imbalance, i.e., targeted fault, under varying speed settings. To study the speed invariance, experimental data obtained from a motor test-bed are processed, and time-series data and time–frequency data are applied to long short-term memory and convolutional neural network, respectively, to evaluate their performance.  more » « less
Award ID(s):
1943364
NSF-PAR ID:
10323549
Author(s) / Creator(s):
Date Published:
Journal Name:
Journal of intelligent manufacturing
Volume:
32
Issue:
2
ISSN:
1572-8145
Page Range / eLocation ID:
393-406
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Hydrodynamic performance of ships can be greatly improved by the formation of air cavities under ship bottom with the purpose to decrease water friction on the hull surface. The air-cavity ships using this type of drag reduction are usually designed for and typically effective only in a relatively narrow range of speeds and hull attitudes and sufficient rates of air supply to the cavity. To investigate the behavior of a small-scale air-cavity boat operating under both favorable and detrimental loading and speed conditions, a remotely controlled model hull was equipped with a data acquisition system, video camera and onboard sensors to measure air-cavity characteristics, air supply rate and the boat speed, thrust and trim in operations on open-water reservoirs. These measurements were captured by a data logger and also wirelessly transmitted to a ground station and video monitor. The experimental air-cavity boat was tested in a range of speeds corresponding to length Froude numbers between 0.17 and 0.5 under three loading conditions, resulting in near zero trim and significant bow-up and bow-down trim angles at rest. Reduced cavity size and significantly increased drag occurred when operating at higher speeds, especially in the bow-up trim condition. The other objective of this study was to determine whether computational fluid dynamics simulations can adequately capture the recorded behavior of the boat and air cavity. A computational software Star-CCM+ was utilized with the VOF method employed for multi-phase flow, RANS approach for turbulence modeling, and economical mesh settings with refinements in the cavity region and near free surface. Upon conducting the mesh verification study, several experimental conditions were simulated, and approximate agreement with measured test data was found. Adaptive mesh refinement and time step controls were also applied to compare results with those obtained on the user-generated mesh. Adaptive controls improved resolution of complex shedding patterns from the air cavity but had little impact on overall results. The presented here experimental approach and obtained results indicate that both outdoor experimentation and computationally inexpensive modeling can be used in the process of developing air-cavity systems for ship hulls. 
    more » « less
  2. Abstract

    Among many structural assessment methods, the change of modal characteristics is considered a well‐accepted damage detection method. However, the presence of environmental or operational variations may pollute the baseline and prevent a dependable assessment of the change. In recent years, the use of machine learning algorithms gained interest within structural health community, especially due to their ability and success in the elimination of ambient uncertainty. This paper proposes an end‐to‐end architecture to detect damage reliably by employing machine learning algorithms. The proposed approach streamlines (a) collection of structural response data, (b) modal analysis using system identification, (c) learning model, and (d) novelty detection. The proposed system aims to extract latent features of accessible modal parameters such as natural frequencies and mode shapes measured at undamaged target structure under temperature uncertainty and to reconstruct a new representation of these features that is similar to the original using well‐established machine learning methods for damage detection. The deviation between measured and reconstructed parameters, also known as novelty index, is the essential information for detecting critical changes in the system. The approach is evaluated by analyzing the structural response data obtained from finite element models and experimental structures. For the machine learning component of the approach, both principal component analysis (PCA) and autoencoder (AE) are examined. While mode shapes are known to be a well‐researched damage indicator in the literature, to our best knowledge, this research is the first time that unsupervised machine learning is applied using PCA and AE to utilize mode shapes in addition to natural frequencies for effective damage detection. The detection performance of this pipeline is compared to a similar approach where its learning model does not utilize mode shapes. The results demonstrate that the effectiveness of the damage detection under temperature variability improves significantly when mode shapes are used in the training of learning algorithm. Especially for small damages, the proposed algorithm performs better in discriminating system changes.

     
    more » « less
  3. null (Ed.)
    The marine-based West Antarctic Ice Sheet (WAIS) is currently retreating due to shifting wind-driven oceanic currents that transport warm waters toward the ice margin, resulting in ice shelf thinning and accelerated mass loss of the WAIS. Previous results from geologic drilling on Antarctica’s continental margins show significant variability in marine-based ice sheet extent during the late Neogene and Quaternary. Numerical models indicate a fundamental role for oceanic heat in controlling this variability over at least the past 20 My. Although evidence for past ice sheet variability has been collected in marginal settings, sedimentologic sequences from the outer continental shelf are required to evaluate the extent of past ice sheet variability and the associated oceanic forcings and feedbacks. International Ocean Discovery Program Expedition 374 drilled a latitudinal and depth transect of five drill sites from the outer continental shelf to rise in the eastern Ross Sea to resolve the relationship between climatic and oceanic change and WAIS evolution through the Neogene and Quaternary. This location was selected because numerical ice sheet models indicate that this sector of Antarctica is highly sensitive to changes in ocean heat flux. The expedition was designed for optimal data-model integration and will enable an improved understanding of the sensitivity of Antarctic Ice Sheet (AIS) mass balance during warmer-than-present climates (e.g., the Pleistocene “super interglacials,” the mid-Pliocene, and the late early to middle Miocene). The principal goals of Expedition 374 were to • Evaluate the contribution of West Antarctica to far-field ice volume and sea level estimates; • Reconstruct ice-proximal atmospheric and oceanic temperatures to identify past polar amplification and assess its forcings and feedbacks; • Assess the role of oceanic forcing (e.g., sea level and temperature) on AIS stability/instability; • Identify the sensitivity of the AIS to Earth’s orbital configuration under a variety of climate boundary conditions; and • Reconstruct eastern Ross Sea paleobathymetry to examine relationships between seafloor geometry, ice sheet stability/instability, and global climate. To achieve these objectives, we will • Use data and models to reconcile intervals of maximum Neogene and Quaternary Antarctic ice advance with far-field records of eustatic sea level change; • Reconstruct past changes in oceanic and atmospheric temperatures using a multiproxy approach; • Reconstruct Neogene and Quaternary sea ice margin fluctuations in datable marine continental slope and rise records and correlate these records to existing inner continental shelf records; • Examine relationships among WAIS stability/instability, Earth’s orbital configuration, oceanic temperature and circulation, and atmospheric pCO2; and • Constrain the timing of Ross Sea continental shelf overdeepening and assess its impact on Neogene and Quaternary ice dynamics. Expedition 374 was carried out from January to March 2018, departing from Lyttelton, New Zealand. We recovered 1292.70 m of high-quality cores from five sites spanning the early Miocene to late Quaternary. Three sites were cored on the continental shelf (Sites U1521, U1522, and U1523). At Site U1521, we cored a 650 m thick sequence of interbedded diamictite, mudstone, and diatomite, penetrating the Ross Sea seismic Unconformity RSU4. The depositional reconstructions of past glacial and open-marine conditions at this site will provide unprecedented insight into environmental change on the Antarctic continental shelf during the early and middle Miocene. At Site U1522, we cored a discontinuous upper Miocene to Pleistocene sequence of glacial and glaciomarine strata from the outer shelf, with the primary objective to penetrate and date seismic Unconformity RSU3, which is interpreted to represent the first major continental shelf–wide expansion and coalescing of marine-based ice streams from both East and West Antarctica. At Site U1523, we cored a sediment drift located beneath the westerly flowing Antarctic Slope Current (ASC). Cores from this site will provide a record of the changing vigor of the ASC through time. Such a reconstruction will enable testing of the hypothesis that changes in the vigor of the ASC represent a key control on regulating heat flux onto the continental shelf, resulting in the ASC playing a fundamental role in ice sheet mass balance. We also cored two sites on the continental slope and rise. At Site U1524, we cored a Plio–Pleistocene sedimentary sequence on the continental rise on the levee of the Hillary Canyon, which is one of the largest conduits of Antarctic Bottom Water delivery from the Antarctic continental shelf into the abyssal ocean. Drilling at Site U1524 was intended to penetrate into middle Miocene and older strata but was initially interrupted by drifting sea ice that forced us to abandon coring in Hole U1524A at 399.5 m drilling depth below seafloor (DSF). We moved to a nearby alternate site on the continental slope (U1525) to core a single hole with a record complementary to the upper part of the section recovered at Site U1524. We returned to Site U1524 3 days later, after the sea ice cleared. We then cored Hole U1524C with the rotary core barrel with the intention of reaching the target depth of 1000 m DSF. However, we were forced to terminate Hole U1524C at 441.9 m DSF due to a mechanical failure with the vessel that resulted in termination of all drilling operations and a return to Lyttelton 16 days earlier than scheduled. The loss of 39% of our operational days significantly impacted our ability to achieve all Expedition 374 objectives as originally planned. In particular, we were not able to obtain the deeper time record of the middle Miocene on the continental rise or abyssal sequences that would have provided a continuous and contemporaneous archive to the high-quality (but discontinuous) record from Site U1521 on the continental shelf. The mechanical failure also meant we could not recover sediment cores from proposed Site RSCR-19A, which was targeted to obtain a high-fidelity, continuous record of upper Neogene and Quaternary pelagic/hemipelagic sedimentation. Despite our failure to recover a shelf-to-rise transect for the Miocene, a continental shelf-to-rise transect for the Pliocene to Pleistocene interval is possible through comparison of the high-quality records from Site U1522 with those from Site U1525 and legacy cores from the Antarctic Geological Drilling Project (ANDRILL). 
    more » « less
  4. null (Ed.)
    International Ocean Discovery Program (IODP) Expedition 357 successfully cored an east–west transect across the southern wall of Atlantis Massif on the western flank of the Mid-Atlantic Ridge to study the links between serpentinization processes and microbial activity in the shallow subsurface of highly altered ultramafic and mafic sequences that have been uplifted to the seafloor along a major detachment fault zone. The primary goals of this expedition were to (1) examine the role of serpentinization in driving hydrothermal systems, sustaining microbial communities, and sequestering carbon; (2) characterize the tectonomagmatic processes that lead to lithospheric heterogeneities and detachment faulting; and (3) assess how abiotic and biotic processes change with variations in rock type and progressive exposure on the seafloor. To accomplish these objectives, we developed a coring and sampling strategy based around the use of seabed rock drills—the first time that such systems have been used in the scientific ocean drilling programs. This technology was chosen in hopes of achieving high recovery of the carbonate cap sequences and intact contact and deformation relationships. The expedition plans also included several engineering developments to assess geochemical parameters during drilling; sample bottom water before and after drilling; supply synthetic tracers during drilling for contamination assessment; gather downhole electrical resistivity and magnetic susceptibility logs for assessing fractures, fluid flow, and extent of serpentinization; and seal boreholes to provide opportunities for future experiments. Seventeen holes were drilled at nine sites across Atlantis Massif, with two sites on the eastern end of the southern wall (Sites M0068 and M0075), three sites in the central section of the southern wall north of the Lost City hydrothermal field (Sites M0069, M0072, and M0076), two sites on the western end (Sites M0071 and M0073), and two sites north of the southern wall in the direction of the central dome of the massif and Integrated Ocean Drilling Program Site U1309 (Sites M0070 and M0074). Use of seabed rock drills enabled collection of more than 57 m of core, with borehole penetration ranging from 1.3 to 16.44 meters below seafloor and core recoveries as high as 75% of total penetration. This high level of recovery of shallow mantle sequences is unprecedented in the history of ocean drilling. The cores recovered along the southern wall of Atlantis Massif have highly heterogeneous lithologies, types of alteration, and degrees of deformation. The ultramafic rocks are dominated by harzburgites with intervals of dunite and minor pyroxenite veins, as well as gabbroic rocks occurring as melt impregnations and veins, all of which provide information about early magmatic processes and the magmatic evolution in the southernmost portion of Atlantis Massif. Dolerite dikes and basaltic rocks represent the latest stage of magmatic activity. Overall, the ultramafic rocks recovered during Expedition 357 revealed a high degree of serpentinization, as well as metasomatic talc-amphibole-chlorite overprinting and local rodingitization. Metasomatism postdates an early phase of serpentinization but predates late-stage intrusion and alteration of dolerite dikes and the extrusion of basalt. The intensity of alteration is generally lower in the gabbroic and doleritic rocks. Chilled margins in dolerite intruded into talc-amphibole-chlorite schists are observed at the most eastern Site M0075. Deformation in Expedition 357 cores is variable and dominated by brecciation and formation of localized shear zones; the degree of carbonate veining was lower than anticipated. All types of variably altered and deformed ultramafic and mafic rocks occur as components in sedimentary breccias and as fault scarp rubble. The sedimentary cap rocks include basaltic breccias with a carbonate sand matrix and/or fossiliferous carbonate. Fresh glass on basaltic components was observed in some of the breccias. The expedition also successfully applied new technologies, namely (1) extensively using an in situ sensor package and water sampling system on the seabed drills for evaluating real-time dissolved oxygen and methane, pH, oxidation-reduction potential, temperature, and conductivity during drilling; (2) deploying a borehole plug system for sealing seabed drill boreholes at four sites to allow access for future sampling; and (3) proving that tracers can be delivered into drilling fluids when using seabed drills. The rock drill sensor packages and water sampling enabled detection of elevated dissolved methane and hydrogen concentrations during and/or after drilling, with “hot spots” of hydrogen observed over Sites M0068–M0072 and methane over Sites M0070–M0072. Shipboard determination of contamination tracer delivery confirmed appropriate sample handling procedures for microbiological and geochemical analyses, which will aid all subsequent microbiological investigations that are part of the science party sampling plans, as well as verify this new tracer delivery technology for seabed drill rigs. Shipboard investigation of biomass density in select samples revealed relatively low and variable cell densities, and enrichment experiments set up shipboard reveal growth. Thus, we anticipate achieving many of the deep biosphere–related objectives of the expedition through continued scientific investigation in the coming years. Finally, although not an objective of the expedition, we were serendipitously able to generate a high-resolution (20 m per pixel) multibeam bathymetry map across the entire Atlantis Massif and the nearby fracture zone, Mid-Atlantic Ridge, and eastern conjugate, taking advantage of weather and operational downtime. This will assist science party members in evaluating and interpreting tectonic and mass-wasting processes at Atlantis Massif. 
    more » « less
  5. null (Ed.)
    High-fidelity characterization and effective monitoring of spatial and spatiotemporal processes are crucial for high-performance quality control of many manufacturing processes and systems in the era of smart manufacturing. Although the recent development in measurement technologies has made it possible to acquire high-resolution three-dimensional (3D) surface measurement data, it is generally expensive and time-consuming to use such technologies in real-world production settings. Data-driven approaches that stem from statistics and machine learning can potentially enable intelligent, cost-effective surface measurement and thus allow manufacturers to use high-resolution surface data for better decision-making without introducing substantial production cost induced by data acquisition. Among these methods, spatial and spatiotemporal interpolation techniques can draw inferences about unmeasured locations on a surface using the measurement of other locations, thus decreasing the measurement cost and time. However, interpolation methods are very sensitive to the availability of measurement data, and their performances largely depend on the measurement scheme or the sampling design, i.e., how to allocate measurement efforts. As such, sampling design is considered to be another important field that enables intelligent surface measurement. This paper reviews and summarizes the state-of-the-art research in interpolation and sampling design for surface measurement in varied manufacturing applications. Research gaps and future research directions are also identified and can serve as a fundamental guideline to industrial practitioners and researchers for future studies in these areas. 
    more » « less