skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Quantifying bankfull flow width using preserved bar clinoforms from fluvial strata
Abstract Reconstruction of active channel geometry from fluvial strata is critical to constrain the water and sediment fluxes in ancient terrestrial landscapes. Robust methods—grounded in extensive field observations, numerical simulations, and physical experiments—exist for estimating the bankfull flow depth and channel-bed slope from preserved deposits; however, we lack similar tools to quantify bankfull channel widths. We combined high-resolution lidar data from 134 meander bends across 11 rivers that span over two orders of magnitude in size to develop a robust, empirical relation between the bankfull channel width and channel-bar clinoform width (relict stratigraphic surfaces of bank-attached channel bars). We parameterized the bar cross-sectional shape using a two-parameter sigmoid, defining bar width as the cross-stream distance between 95% of the asymptotes of the fit sigmoid. We combined this objective definition of the bar width with Bayesian linear regression analysis to show that the measured bankfull flow width is 2.34 ± 0.13 times the channel-bar width. We validated our model using field measurements of channel-bar and bankfull flow widths of meandering rivers that span all climate zones (R2 = 0.79) and concurrent measurements of channel-bar clinoform width and mud-plug width in fluvial strata (R2 = 0.80). We also show that the transverse bed slopes of bars are inversely correlated with bend curvature, consistent with theory. Results provide a simple, usable metric to derive paleochannel width from preserved bar clinoforms.  more » « less
Award ID(s):
1935513
PAR ID:
10323646
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Geology
Volume:
49
Issue:
9
ISSN:
0091-7613
Page Range / eLocation ID:
1038 to 1043
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT The Triassic Katberg Formation has played a central role in interpreting the end-Permian ecosystem crisis, as part of a hypothesis of aridification, vegetation loss, and sediment release in continental settings. We use drone images of an inaccessible cliff near Bethulie to investigate the Swartberg member, a braided-fluvial body 45 m thick, describing remote outcrop facies to identify geomorphic units and using spatial analysis to estimate their proportions in 2-D sections. Here the Swartberg member comprises three channel belts within shallow valleys, the lowermost of which is ∼500 m wide and incised into lacustrine deposits. The component channel bodies consist mainly of trough cross-bedded sand sheets (48%) and channel-scour fills (28%). Recognizable bars (15%) comprise unit bars with high-angle slipfaces and mounded bar cores (components of mid-channel compound bars), bars built around vegetation, and bank-attached bars in discrete, probably low-sinuosity conduits. Abandoned channels constitute 8% and 16% of flow-parallel and -transverse sections, respectively. When corrected for compaction, the average thalweg depth of the larger channels is 3.9 m, with an average bankfull width of 84 m, scaling broadly with the relief of the bars and comparable in scale to the Platte and South Saskatchewan rivers of North America. The fluvial style implies perennial but seasonably variable flow in a vegetated landscape with a humid paleoclimate. The northward paleoflow accords with regional paleoflow patterns and deposition on a megafan sourced in the Cape Fold Belt, where the Swartberg member represents the avulsion of a major transverse-flowing river. U-Pb dating of in situ and reworked pedogenic carbonate nodules from below the base of the Swartberg member yielded Anisian to Ladinian ages (Middle Triassic), younger than the previously assumed Early Triassic age and implying that considerable gaps in time exist in the succession. An assessment of the interval spanning the lower to mid Katberg Formation is needed to reevaluate the inferred unidirectional trend in fluvial style, aridification, and fossil distributions in this condensed, disjunct succession. 
    more » « less
  2. The Triassic Katberg Formation has played a central role in interpreting the end-Permian ecosystem crisis, as part of a hypothesis of aridification, vegetation loss, and sediment release in continental settings. We use drone images of an inaccessible cliff near Bethulie to investigate the Swartberg member, a 45 m thick braided-fluvial body, describing remote outcrop facies to identify geomorphic units and using spatial analysis to estimate their proportions in 2D sections. Here the Swartberg member comprises three channel belts within shallow valleys, the lowermost of which is ~500 m wide and incised into lacustrine deposits. The component channel bodies consist mainly of trough cross-bedded sand sheets (48%) and channel-scour fills (28%). Recognizable bars (15%) comprise unit bars with high-angle slipfaces and mounded bar cores (components of mid-channel compound bars), bars built around vegetation, and bank-attached bars in discrete, probably low-sinuosity conduits. Abandoned channels constitute 8% and 16% of flow-parallel and -transverse sections, respectively. When corrected for compaction, the average thalweg depth of the larger channels is 3.9 m, with an average bankfull width of 84 m, scaling broadly with the relief of the bars and comparable in scale to the Platte and South Saskatchewan rivers of North America. The fluvial style implies perennial but seasonably variable flow in a vegetated landscape with a humid paleoclimate. The northward paleoflow accords with regional paleoflow patterns and deposition on a megafan sourced in the Cape Fold Belt, where the Swartberg member represents the avulsion of a major transverse-flowing river. U-Pb dating of in situ and reworked pedogenic carbonate nodules from below the base of the Swartberg member yielded Anisian to Ladinian ages (Middle Triassic), younger than the previously assumed Early Triassic age and implying that considerable gaps in time exist within the succession. An assessment of the interval spanning the lower to mid Katberg Formation is needed to reevaluate the inferred unidirectional trend in fluvial style, aridification, and fossil distributions in this condensed, disjunct succession. 
    more » « less
  3. Abstract In meandering rivers, interactions between flow, sediment transport, and bed topography affect diverse processes, including bedform development and channel migration. Predicting how these interactions affect the spatial patterns and magnitudes of bed deformation in meandering rivers is essential for various river engineering and geoscience problems. Computational fluid dynamics simulations can predict river morphodynamics at fine temporal and spatial scales but have traditionally been challenged by the large scale of natural rivers. We conducted coupled large‐eddy simulation and bed morphodynamics simulations to create a unique database of hydro‐morphodynamic data sets for 42 meandering rivers with a variety of planform shapes and large‐scale geometrical features that mimic natural meanders. For each simulated river, the database includes (a) bed morphology, (b) three‐dimensional mean velocity field, and (c) bed shear stress distribution under bankfull flow conditions. The calculated morphodynamics results at dynamic equilibrium revealed the formation of scour and deposition patterns near the outer and inner banks, respectively, while the location of point bars and scour regions around the apexes of the meander bends is found to vary as a function of the radius of curvature of the bends to the width ratio. A new mechanism is proposed that explains this seemingly paradoxical finding. The high‐fidelity simulation results generated in this work provide researchers and scientists with a rich numerical database for morphodynamics and bed shear stress distributions in large‐scale meandering rivers to enable systematic investigation of the underlying phenomena and support a range of river engineering applications. 
    more » « less
  4. Abstract During a flood, the geometry of a river channel constrains the flows of water and sediment, however, over many floods, bankfull channel geometry evolves to reflect the longer‐term fluxes of water and sediment supplied by the catchment. Physics‐based models predict the average relationship between bankfull geometry and discharge to within an order of magnitude, however, observed variability about the prediction remains unaccounted for. We used high‐resolution topography to extract continuous measurements of bankfull width from 67 sites spanning the continental United States, yielding a reach‐scale probabilistic description of river width for each site. Within an individual reach, bankfull river width is well‐described by a lognormal distribution. Rivers that spend a greater proportion of time above bankfull are wider for the same bankfull discharge, revealing an unrecognized pathway through which climatic or engineered changes in flow frequency could alter river geometry and therefore impact aquatic habitat and flooding risk. 
    more » « less
  5. Abstract Equilibrium geometry of single‐thread rivers with fixed width (engineered rivers) is determined with a flow resistance relation and a sediment transport relation, if characteristic discharge, sediment caliber and supply are specified. In self‐formed channels, however, channel width is not imposed, and one more relation is needed to predict equilibrium geometry. Specifying this relation remains an open problem. Here we present a new model that brings together a coherent train of research progress over 35 years to predict equilibrium geometry of single‐thread rivers from the conservation of channel and floodplain material. Predicted channel geometries are comparable with field observations. In response to increasing floodplain width, sand load and grain size, the equilibrium slope increases, bankfull depth and width decrease. As the volume fraction content of mud in the sediment load increases, bankfull width‐to‐depth ratio and slope decrease suggesting that mud load has a strong control on channel patterns and bankfull geometry. 
    more » « less