skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: BRAIDED-RIVER ARCHITECTURE OF THE TRIASSIC SWARTBERG MEMBER, KATBERG FORMATION, SOUTH AFRICA: ASSESSING AGE, FLUVIAL STYLE, AND PALEOCLIMATE AFTER THE END-PERMIAN EXTINCTION
ABSTRACT The Triassic Katberg Formation has played a central role in interpreting the end-Permian ecosystem crisis, as part of a hypothesis of aridification, vegetation loss, and sediment release in continental settings. We use drone images of an inaccessible cliff near Bethulie to investigate the Swartberg member, a braided-fluvial body 45 m thick, describing remote outcrop facies to identify geomorphic units and using spatial analysis to estimate their proportions in 2-D sections. Here the Swartberg member comprises three channel belts within shallow valleys, the lowermost of which is ∼500 m wide and incised into lacustrine deposits. The component channel bodies consist mainly of trough cross-bedded sand sheets (48%) and channel-scour fills (28%). Recognizable bars (15%) comprise unit bars with high-angle slipfaces and mounded bar cores (components of mid-channel compound bars), bars built around vegetation, and bank-attached bars in discrete, probably low-sinuosity conduits. Abandoned channels constitute 8% and 16% of flow-parallel and -transverse sections, respectively. When corrected for compaction, the average thalweg depth of the larger channels is 3.9 m, with an average bankfull width of 84 m, scaling broadly with the relief of the bars and comparable in scale to the Platte and South Saskatchewan rivers of North America. The fluvial style implies perennial but seasonably variable flow in a vegetated landscape with a humid paleoclimate. The northward paleoflow accords with regional paleoflow patterns and deposition on a megafan sourced in the Cape Fold Belt, where the Swartberg member represents the avulsion of a major transverse-flowing river. U-Pb dating of in situ and reworked pedogenic carbonate nodules from below the base of the Swartberg member yielded Anisian to Ladinian ages (Middle Triassic), younger than the previously assumed Early Triassic age and implying that considerable gaps in time exist in the succession. An assessment of the interval spanning the lower to mid Katberg Formation is needed to reevaluate the inferred unidirectional trend in fluvial style, aridification, and fossil distributions in this condensed, disjunct succession.  more » « less
Award ID(s):
1714759
PAR ID:
10475560
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
SEPM
Date Published:
Journal Name:
Journal of Sedimentary Research
Volume:
93
Issue:
10
ISSN:
1527-1404
Page Range / eLocation ID:
741 to 775
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The Triassic Katberg Formation has played a central role in interpreting the end-Permian ecosystem crisis, as part of a hypothesis of aridification, vegetation loss, and sediment release in continental settings. We use drone images of an inaccessible cliff near Bethulie to investigate the Swartberg member, a 45 m thick braided-fluvial body, describing remote outcrop facies to identify geomorphic units and using spatial analysis to estimate their proportions in 2D sections. Here the Swartberg member comprises three channel belts within shallow valleys, the lowermost of which is ~500 m wide and incised into lacustrine deposits. The component channel bodies consist mainly of trough cross-bedded sand sheets (48%) and channel-scour fills (28%). Recognizable bars (15%) comprise unit bars with high-angle slipfaces and mounded bar cores (components of mid-channel compound bars), bars built around vegetation, and bank-attached bars in discrete, probably low-sinuosity conduits. Abandoned channels constitute 8% and 16% of flow-parallel and -transverse sections, respectively. When corrected for compaction, the average thalweg depth of the larger channels is 3.9 m, with an average bankfull width of 84 m, scaling broadly with the relief of the bars and comparable in scale to the Platte and South Saskatchewan rivers of North America. The fluvial style implies perennial but seasonably variable flow in a vegetated landscape with a humid paleoclimate. The northward paleoflow accords with regional paleoflow patterns and deposition on a megafan sourced in the Cape Fold Belt, where the Swartberg member represents the avulsion of a major transverse-flowing river. U-Pb dating of in situ and reworked pedogenic carbonate nodules from below the base of the Swartberg member yielded Anisian to Ladinian ages (Middle Triassic), younger than the previously assumed Early Triassic age and implying that considerable gaps in time exist within the succession. An assessment of the interval spanning the lower to mid Katberg Formation is needed to reevaluate the inferred unidirectional trend in fluvial style, aridification, and fossil distributions in this condensed, disjunct succession. 
    more » « less
  2. ABSTRACT Natural river diversion, or avulsion, controls the distribution of channels on a floodplain and channel sandstone bodies within fluvial stratigraphic architecture. Avulsions establish new flow paths and create channels through several recognized processes, or styles. These include reoccupying existing channels, or annexation, downcutting into the floodplain, or incision, and constructing new channels from crevasse‐splay distributary networks, or progradation. Recent remote sensing observations show that avulsion style changes systematically moving downstream along modern fluvial fans but, to date, no studies have assessed the significance of these trends on fluvial fan stratigraphy. Here, spatiotemporal changes in avulsion stratigraphy are investigated within the Salt Wash Member of the Morrison Formation, deposited in the Cordilleran foreland basin during the Late Jurassic epoch. Measured sections and photographic panels were analysed from 23 locations across the Salt Wash extent. Avulsion style was identified in the stratigraphic record by the basal contact of a channel storey with underlying strata: channel–channel contacts indicate annexation, channel–floodplain contacts indicate incision and channel–heterolithic contacts indicate progradation. Contact types change downstream, such that channel–channel and channel–floodplain contacts dominate proximal locations, while channel–heterolithic contacts become increasingly prevalent downstream. Outcrop results were compared to a numerical model of fluvial fan formation and remote‐sensing analysis of avulsions on modern fans. In both additional datasets, channels in proximal fan positions tend to avulse via annexation, reoccupying abandoned channels, while channels in more distal positions tend to avulse via increasingly significant progradation. These findings suggest a relationship between newly recognized downstream changes in avulsion style and well‐established downstream changes in fluvial fan architecture. Furthermore, this suggests that fan architecture can inform interpretations of ancient fluvial dynamics, including avulsion behaviour, and that avulsions can cause stratigraphically significant and measurable changes to fan architecture. 
    more » « less
  3. ABSTRACT The rarely witnessed process of river avulsion repositions channels across floodplains, which influences floodplain geomorphology and stratigraphic architecture. The way avulsions redirect water and sediment is typically generalized into one of two styles. Avulsions proceeding through rapid channel switching and producing little to no floodplain disturbance are annexational, while those that involve sequential phases of crevassing, flooding, and eventual development of a new channel are progradational. We test the validity of these avulsion style categories by mapping and characterizing 14 avulsion events in Andean, Himalayan, and New Guinean foreland basins. We use Landsat data to identify how avulsions proceed and interpret the possible products of these processes in terms of geomorphic features and stratigraphy. We show that during annexation the avulsion channel widens, changes its meander wavelength and amplitude, or increases channel thread count. During progradation, avulsion channels are constructed from evolving distributary networks. Often beginning as crevasse splays, these networks migrate down the floodplain gradient and frequently create and fill ponds during the process. We also see evidence for a recently defined third avulsion style. Retrogradation involves overbank flow, like progradation, but is marked by an upstream-migrating abandonment and infilling of the parent channel. Avulsion belts in this study range from 5 to 60 km in length, and from 1 to 50 km in width. On average, these events demonstrate annexational style over 22.4% of their length. Eleven of 13 events either begin or end with annexation, and seven both begin and end with annexation. Only one event exhibited progradation over the entire avulsion-belt length. While there are many documented examples of purely annexational avulsions, we see little evidence for completely progradational or retrogradational avulsions, and instead suggest that a given avulsion is better envisioned as a series of spatiotemporal phases of annexation, progradation, and retrogradation. Such hybrid avulsions likely produce significantly greater stratigraphic variability than that predicted by the traditional end-member model. We suggest that a time-averaged, formation-scale consideration of avulsion products will yield more accurate characterizations of avulsion dynamics in ancient fluvial systems. 
    more » « less
  4. Abstract Reconstruction of active channel geometry from fluvial strata is critical to constrain the water and sediment fluxes in ancient terrestrial landscapes. Robust methods—grounded in extensive field observations, numerical simulations, and physical experiments—exist for estimating the bankfull flow depth and channel-bed slope from preserved deposits; however, we lack similar tools to quantify bankfull channel widths. We combined high-resolution lidar data from 134 meander bends across 11 rivers that span over two orders of magnitude in size to develop a robust, empirical relation between the bankfull channel width and channel-bar clinoform width (relict stratigraphic surfaces of bank-attached channel bars). We parameterized the bar cross-sectional shape using a two-parameter sigmoid, defining bar width as the cross-stream distance between 95% of the asymptotes of the fit sigmoid. We combined this objective definition of the bar width with Bayesian linear regression analysis to show that the measured bankfull flow width is 2.34 ± 0.13 times the channel-bar width. We validated our model using field measurements of channel-bar and bankfull flow widths of meandering rivers that span all climate zones (R2 = 0.79) and concurrent measurements of channel-bar clinoform width and mud-plug width in fluvial strata (R2 = 0.80). We also show that the transverse bed slopes of bars are inversely correlated with bend curvature, consistent with theory. Results provide a simple, usable metric to derive paleochannel width from preserved bar clinoforms. 
    more » « less
  5. Abstract. We investigate the interaction of fluvial and non-fluvial sedimentation on the channel morphology and kinematics of an experimental river delta. We compare two deltas: one that evolved with a proxy for non-fluvial (“marsh”) sedimentation (treatment experiment) and one that evolved without the proxy (control). We show that the addition of the non-fluvial sediment proxy alters the delta's channel morphology and kinematics. Notably, the flow outside the channels is significantly reduced in the treatment experiment, and the channels are deeper (as a function of radial distance from the source) and longer. We also find that both the control and treatment channels narrow as they approach the shoreline, though the narrowing is more pronounced in the control compared to the treatment. Interestingly, the channel beds in the treatment experiment often exist below sea level in the terrestrial portion of the delta top, creating a ∼ 0.7 m reach of steady, non-uniform backwater flow. However, in the control experiment, the channel beds generally exist at or above relative sea level, creating channel movement resembling morphodynamic backwater kinematics and topographic flow expansions. Differences between channel and far-field aggradation produce a longer channel in-filling timescale for the treatment compared to the control, suggesting that the channel avulsions triggered by a peak in channel sedimentation occur less frequently in the treatment experiment. Despite this difference, the basin-wide timescale of lateral channel mobility remains similar. Ultimately, non-fluvial sedimentation on the delta top plays a key role in the channel morphology and kinematics of an experimental river delta, producing channels which are more analogous to channels in global river deltas and which cannot be produced solely by increasing cohesion in an experimental river delta. 
    more » « less