skip to main content


Title: From Poison to Promise: The Evolution of Tetrodotoxin and Its Potential as a Therapeutic
Tetrodotoxin (TTX) is a potent neurotoxin that was first identified in pufferfish but has since been isolated from an array of taxa that host TTX-producing bacteria. However, determining its origin, ecosystem roles, and biomedical applications has challenged researchers for decades. Recognized as a poison and for its lethal effects on humans when ingested, TTX is primarily a powerful sodium channel inhibitor that targets voltage-gated sodium channels, including six of the nine mammalian isoforms. Although lethal doses for humans range from 1.5–2.0 mg TTX (blood level 9 ng/mL), when it is administered at levels far below LD50, TTX exhibits therapeutic properties, especially to treat cancer-related pain, neuropathic pain, and visceral pain. Furthermore, TTX can potentially treat a variety of medical ailments, including heroin and cocaine withdrawal symptoms, spinal cord injuries, brain trauma, and some kinds of tumors. Here, we (i) describe the perplexing evolution and ecology of tetrodotoxin, (ii) review its mechanisms and modes of action, and (iii) offer an overview of the numerous ways it may be applied as a therapeutic. There is much to be explored in these three areas, and we offer ideas for future research that combine evolutionary biology with therapeutics. The TTX system holds great promise as a therapeutic and understanding the origin and chemical ecology of TTX as a poison will only improve its general benefit to humanity.  more » « less
Award ID(s):
1655392
NSF-PAR ID:
10323783
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Toxins
Volume:
13
Issue:
8
ISSN:
2072-6651
Page Range / eLocation ID:
517
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Colourful displays are used by diverse taxa to warn predators of dangerous defences (aposematism). Aposematic coloration is especially widespread among amphibians, which are often protected by harmful toxins. Pacific newts (Taricha) are considered a model of aposematism because when threatened, they arch the head and tail upwards to expose a vivid orange ventrum against a dark dorsum. Given that newts are defended by tetrodotoxin (TTX), a lethal neurotoxin, this signal is assumed to warn predators that an attack would be risky. However, colours have not been quantified in Taricha, and it remains unknown whether coloration provides qualitatively honest (signalling toxic defence) or quantitatively honest (signalling toxin level) warnings. We used two colour quantification methods (spectrometry and hyperspectral imaging) to measure chromatic (hue) and achromatic (brightness) qualities of ventral and dorsal coloration in two newt species (Taricha granulosa and Taricha sierrae). We assessed qualitative honesty using visual models of potential predators (snakes, birds and mammals). Next, we evaluated quantitative honesty by measuring TTX in newts and examining the potential correlation between defence level (amount of TTX) and colorimetrics. We found support for qualitative but not quantitative honesty. Selective pressures and evolutionary constraints might impede the evolution of honest quantitative signalling in this system.

     
    more » « less
  2. Abstract

    The Geographic Mosaic Theory of Coevolution predicts that coevolutionary arms races will vary over time and space because of the diverse ecological settings and population histories of interacting species across the landscape. Thus, understanding coevolution may require investigating broad sets of populations sampled across the range of the interaction. In addition, comparing coevolutionary dynamics between similar systems may reveal the importance of specific factors that structure coevolution.

    Here, we examine geographic patterns of prey traits and predator traits in the relatively unstudied interaction between the Sierra garter snake (Thamnophis couchii) and sympatric prey, the rough‐skinned newt (Taricha granulosa), Sierra newt (Ta. sierrae) and California newt (Ta. torosa). This system parallels, in space and phenotypes, a classic example of coevolution between predatory common garter snakes (Th. sirtalis) and their toxic newt prey exhibiting hotspots of newt tetrodotoxin (TTX) levels and matching snake TTX resistance.

    We quantified prey and predator traits from hundreds of individuals across their distributions, and functional trait matching at sympatric sites.

    We show strong regional patterns of trait covariation across the shared ranges ofTh. couchiiand newt prey. Traits differ significantly among localities, with lower newt TTX levels and snake TTX resistance at the northern latitudes, and higher TTX levels and snake resistance at southern latitudes. Newts and snakes in northern populations show the highest degree of functional trait matching despite possessing the least extreme traits. Conversely, newts and snakes in southern populations show the greatest mismatch despite possessing exaggerated traits, with some snakes so resistant to TTX they would be unaffected by any sympatric newt. Nevertheless, individual variation was substantial, and appears to offer the opportunity for continued reciprocal selection in most populations.

    Overall, the three species of newts appear to be engaged in a TTX‐mediated arms race withTh. couchii. These patterns are congruent with those seen between newts andTh. sirtalis, including the same latitudinal gradient in trait covariation, and the potential ‘escape’ from the arms race by snake predators. Such concordance in broad scale patterns across two distinct systems suggests common phenomena might structure geographic mosaics in similar ways.

     
    more » « less
  3. Abstract

    Genetic variants in SCN2A, encoding the NaV1.2 voltage-gated sodium channel, are associated with a range of neurodevelopmental disorders with overlapping phenotypes. Some variants fit into a framework wherein gain-of-function missense variants that increase neuronal excitability lead to developmental and epileptic encephalopathy, while loss-of-function variants that reduce neuronal excitability lead to intellectual disability and/or autism spectrum disorder (ASD) with or without co-morbid seizures. One unique case less easily classified using this framework is the de novo missense variant SCN2A-p.K1422E, associated with infant-onset developmental delay, infantile spasms and features of ASD. Prior structure–function studies demonstrated that K1422E substitution alters ion selectivity of NaV1.2, conferring Ca2+ permeability, lowering overall conductance and conferring resistance to tetrodotoxin (TTX). Based on heterologous expression of K1422E, we developed a compartmental neuron model incorporating variant channels that predicted reductions in peak action potential (AP) speed. We generated Scn2aK1422E mice and characterized effects on neurons and neurological/neurobehavioral phenotypes. Cultured cortical neurons from heterozygous Scn2aK1422E/+ mice exhibited lower current density with a TTX-resistant component and reversal potential consistent with mixed ion permeation. Recordings from Scn2aK1442E/+ cortical slices demonstrated impaired AP initiation and larger Ca2+ transients at the axon initial segment during the rising phase of the AP, suggesting complex effects on channel function. Scn2aK1422E/+ mice exhibited rare spontaneous seizures, interictal electroencephalogram abnormalities, altered induced seizure thresholds, reduced anxiety-like behavior and alterations in olfactory-guided social behavior. Overall, Scn2aK1422E/+ mice present with phenotypes similar yet distinct from other Scn2a models, consistent with complex effects of K1422E on NaV1.2 channel function.

     
    more » « less
  4. Rough-skinned newts produce tetrodotoxin or TTX, a deadly neurotoxin that is also present in some pufferfish, octopuses, crabs, starfish, flatworms, frogs, and toads. It remains a mystery why so many different creatures produce this toxin. One possibility is that TTX did not evolve in animals at all, but rather it is made by bacteria living on or in these creatures. In fact, scientists have already shown that TTX-producing bacteria supply pufferfish, octopus, and other animals with the toxin. However, it was not known where TTX in newts and other amphibians comes from. TTX kills animals by blocking specialized ion channels and shutting down the signaling between neurons, but rough-skinned newts appear insensitive to this blockage, making it likely that they have evolved defenses against the toxin. Some garter snakes that feed on these newts have also evolved to become immune to the effects of TTX. If bacteria are the source of TTX in the newts, the emergence of newt-eating snakes resistant to TTX must be putting evolutionary pressure on both the newts and the bacteria to boost their anti-snake defenses. Learning more about these complex relationships will help scientists better understand both evolution and the role of beneficial bacteria. Vaelli et al. have now shown that bacteria living on rough-skinned newts produce TTX. In the experiments, bacteria samples were collected from the skin of the newts and grown in the laboratory. Four different types of bacteria from the samples collected produced TTX. Next, Vaelli et al. looked at five genes that encode the channels normally affected by TTX in newts and found that all them have mutations that prevent them from being blocked by this deadly neurotoxin. This suggests that bacteria living on newts shape the evolution of genes critical to the animals’ own survival. Helpful bacteria living on and in animals have important effects on animals’ physiology, health, and disease. But understanding these complex interactions is challenging. Rough-skinned newts provide an excellent model system for studying the effects of helpful bacteria living on animals. Vaelli et al. show that a single chemical produced by bacteria can impact diverse aspects of animal biology including physiology, the evolution of their genes, and their interactions with other creatures in their environment. 
    more » « less
  5. Abstract

    Antagonistic coevolution between natural enemies can produce highly exaggerated traits, such as prey toxins and predator resistance. This reciprocal process of adaptation and counter‐adaptation may also open doors to other evolutionary novelties not directly involved in the phenotypic interface of coevolution. We tested the hypothesis that predator–prey coevolution coincided with the evolution of conspicuous coloration on resistant predators that retain prey toxins. In western North America, common garter snakes (Thamnophis sirtalis) have evolved extreme resistance to tetrodotoxin (TTX) in the coevolutionary arms race with their deadly prey, Pacific newts (Tarichaspp.). TTX‐resistant snakes can retain large amounts of ingested TTX, which could serve as a deterrent against the snakes' own predators if TTX toxicity and resistance are coupled with a conspicuous warning signal. We evaluated whether arms race escalation covaries with bright red coloration in snake populations across the geographic mosaic of coevolution. Snake colour variation departs from the neutral expectations of population genetic structure and covaries with escalating clines of newt TTX and snake resistance at two coevolutionary hotspots. In the Pacific Northwest, bright red coloration fits an expected pattern of an aposematic warning to avian predators: TTX‐resistant snakes that consume highly toxic newts also have relatively large, reddish‐orange dorsal blotches. Snake coloration also seems to have evolved with the arms race in California, but overall patterns are less intuitively consistent with aposematism. These results suggest that interactions with additional trophic levels can generate novel traits as a cascading consequence of arms race coevolution across the geographic mosaic.

     
    more » « less