The problem driving this debate issue is old, going back to at least to the 17th century. Yet, psychologists are no closer to solving the problem now than they were centuries ago. In this article I argue that the reason for the lack of definitive solution is that disputants share assumptions that make the problem unsolvable. More specifically, the problem is based on the assumptions that (a) the knowledge field of psychology is coherent and (b) natural scientists employ a common inquiry approach. Both are troublesome. As such, instead of asking questions such as “Should psychologists follow the natural sciences?” it would be much more meaningful to ask questions such as “What does it look like for psychologists in this subfield to follow a scientific approach?”
more »
« less
Your Brain Is Not an Onion With a Tiny Reptile Inside
A widespread misconception in much of psychology is that (a) as vertebrate animals evolved, “newer” brain structures were added over existing “older” brain structures, and (b) these newer, more complex structures endowed animals with newer and more complex psychological functions, behavioral flexibility, and language. This belief, although widely shared in introductory psychology textbooks, has long been discredited among neurobiologists and stands in contrast to the clear and unanimous agreement on these issues among those studying nervous-system evolution. We bring psychologists up to date on this issue by describing the more accurate model of neural evolution, and we provide examples of how this inaccurate view may have impeded progress in psychology. We urge psychologists to abandon this mistaken view of human brains.
more »
« less
- Award ID(s):
- 1655392
- PAR ID:
- 10323786
- Date Published:
- Journal Name:
- Current Directions in Psychological Science
- Volume:
- 29
- Issue:
- 3
- ISSN:
- 0963-7214
- Page Range / eLocation ID:
- 255 to 260
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
In many vertebrates, courtship occurs through the performance of elaborate behavioral displays that are as spectacular as they are complex. The question of how sexual selection acts upon these animals’ neuromuscular systems to transform a repertoire of pre-existing movements into such remarkable (if not unusual) display routines has received relatively little research attention. This is a surprising gap in knowledge, given that unraveling this extraordinary process is central to understanding the evolution of behavioral diversity and its neural control. In many vertebrates, courtship displays often push the limits of neuromuscular performance, and often in a ritualized manner. These displays can range from songs that require rapid switching between two independently controlled ‘voice boxes’ to precisely choreographed acrobatics. Here, we propose a framework for thinking about how the brain might not only control these displays, but also shape their evolution. Our framework focuses specifically on a major midbrain area, which we view as a likely important node in the orchestration of the complex neural control of behavior used in the courtship process. This area is the periaqueductal grey (PAG), as studies suggest that it is both necessary and sufficient for the production of many instinctive survival behaviors, including courtship vocalizations. Thus, we speculate about why the PAG, as well as its key inputs, might serve as targets of sexual selection for display behavior. In doing so, we attempt to combine core ideas about the neural control of behavior with principles of display evolution. Our intent is to spur research in this area and bring together neurobiologists and behavioral ecologists to more fully understand the role that the brain might play in behavioral innovation and diversification.more » « less
-
null (Ed.)We review recent theoretical and empirical work on the emergence of relational reasoning, drawing connections among the fields of comparative psychology, developmental psychology, cognitive neuroscience, cognitive science, and machine learning. Relational learning appears to involve multiple systems: a suite of Early Systems that are available to human infants and are shared to some extent with nonhuman animals; and a Late System that emerges in humans only, at approximately age three years. The Late System supports reasoning with explicit role-governed relations, and is closely tied to the functions of a frontoparietal network in the human brain. Recent work in cognitive science and machine learning suggests that humans (and perhaps machines) may acquire abstract relations from nonrelational inputs by means of processes that enable re-representation.more » « less
-
The COVID-19 pandemic has extensively changed the state of psychological science from what research questions psychologists can ask to which methodologies psychologists can use to investigate them. In this article, we offer a perspective on how to optimize new research in the pandemic’s wake. Because this pandemic is inherently a social phenomenon—an event that hinges on human-to-human contact—we focus on socially relevant subfields of psychology. We highlight specific psychological phenomena that have likely shifted as a result of the pandemic and discuss theoretical, methodological, and practical considerations of conducting research on these phenomena. After this discussion, we evaluate metascientific issues that have been amplified by the pandemic. We aim to demonstrate how theoretically grounded views on the COVID-19 pandemic can help make psychological science stronger—not weaker—in its wake.more » « less
-
Abstract Concerted developmental programming may constrain changes in component structures of the brain, thus limiting the ability of selection to form an adaptive mosaic of size‐variable brain compartments independent of total brain size or body size. Measuring patterns of gene expression underpinning brain scaling in conjunction with anatomical brain atlases can aid in identifying influences of concerted and/or mosaic evolution. Species exhibiting exceptional size and behavioral polyphenisms provide excellent systems to test predictions of brain evolution models by quantifying brain gene expression. We examined patterns of brain gene expression in a remarkably polymorphic and behaviorally complex social insect, the leafcutter antAtta cephalotes. The majority of significant differential gene expression observed among three morphologically, behaviorally, and neuroanatomically differentiated worker size groups was attributable to body size. However, we also found evidence of differential brain gene expression unexplained by worker morphological variation and transcriptomic analysis identified patterns not linearly correlated with worker size but sometimes mirroring neuropil scaling. Additionally, we identified enriched gene ontology terms associated with nucleic acid regulation, metabolism, neurotransmission, and sensory perception, further supporting a relationship between brain gene expression, brain mosaicism, and worker labor role. These findings demonstrate that differential brain gene expression among polymorphic workers underpins behavioral and neuroanatomical differentiation associated with complex agrarian division of labor inA. cephalotes.more » « less