Bulk-rock data are commonly used in geochemical studies as a proxy for melt compositions in order to understand the evolution of crustal melts. However, processes of crystal accumulation and melt migration out of deep-crustal, crystal-rich mush zones to shallower storage regions raise questions about how faithfully bulk-rock compositions in plutons approximate melt compositions. This problem is particularly acute in the lower crust of arcs, where melt reservoirs are subject to periodic melt extraction that leaves behind a cumulate residue. Here, we examine bulk-rock data from the perspective of high-Sr/Y plutonic rocks in the lower crust of a well-exposed Early Cretaceous cordilleran-arc system in Fiordland, New Zealand. We test the validity of using high-Sr/Y bulk-rock compositions as proxies for melts by comparing bulk-rock compositions to melts modeled from >100 major- and trace-element analyses of 23 magmatic clinopyroxene grains from the same samples. The sampling locations of the igneous clinopyroxenes and encompassing bulk rocks are distributed across ~550 km2 of exhumed lower crust and are representative of Mesozoic lower-crustal arc rocks in the Median batholith. We confirm that bulk-rock data have characteristics of high-Sr/Y plutons (Sr/Y >50, Na2O >3.5 wt%, Sr >1000 ppm, and Y <20 ppm), features that have been previously interpreted to indicate the presence of garnet as a residual or fractionating phase. In contrast to bulk rocks, igneous clinopyroxenes have low Sr (<100 ppm), high Y (25–100 ppm), and low molar Mg# [100 × Mg/(Mg + Fe)] values (60–70), which are consistent with derivation from fractionated, low-Sr/Y melts. Chondrite-normalized rare-earth-element patterns and Sm/Yb values in clinopyroxenes also show little to no evidence for involvement of garnet in the source or in differentiation processes. Fe-Mg partitioning relationships indicate that clinopyroxenes are not in equilibrium with their encompassing bulk rocks but could have been in equilibrium with melt compositions determined from chemometry of coexisting igneous hornblendes. Moho-depth calculations based on bulk-rock Sr/Y values also yield Moho depths (average = 69 km) that are inconsistent with Moho depths based on bulk-rock Ce/Y, contact aureole studies, Al-in-horn- blende crystallization pressures, and our modeled clinopyroxene crystallization pressures. These data indicate that most Mesozoic high-Sr/Y bulk rocks in the lower crust of Fiordland are cumulates formed by plagioclase + amphibole + clinopyroxene accumulation and interstitial melt loss from crystal-rich mush zones. Our data do not support widespread fractionation of igneous garnet nor partial melting of a garnet-bearing source in the petrogenesis of these melts. We speculate that melt extraction and the production of voluminous cumulates in the lower crust were aided by unusually high heat flow and high magma addition rates associated with an Early Cretaceous arc flareup. We conclude that bulk-rock compositions are poor proxies for melt compositions in the lower crust of the Median batholith, and geochemical modeling of these high-Sr/Y bulk rocks would overemphasize the role of garnet in their petrogenesis.
more »
« less
The Generation of Arc Andesites and Dacites in the Lower Crust of a Cordilleran Arc, Fiordland, New Zealand
Abstract We present microbeam major- and trace-element data from 14 monzodiorites collected from the Malaspina Pluton (Fiordland, New Zealand) with the goal of evaluating processes involved in the production of andesites in lower arc crust. We focus on relict igneous assemblages consisting of plagioclase and amphibole with lesser amounts of clinopyroxene, orthopyroxene, biotite and quartz. These relict igneous assemblages are heterogeneously preserved in the lower crust within sheeted intrusions that display hypersolidus fabrics defined by alignment of unstrained plagioclase and amphibole. Trace-element data from relict igneous amphiboles in these rocks reveal two distinct groups: one relatively enriched in high field strength element concentrations and one relatively depleted. The enriched amphibole group has Zr values in the range of ∼25–110 ppm, Nb values of ∼5–32 ppm, and Th values up to 2·4 ppm. The depleted group, in contrast, shows Zr values <35 ppm and Nb values <0·25 ppm, and Th is generally below the level of detection. Amphibole crystallization temperatures calculated from major elements range from ∼960 to 830 °C for all samples in the pluton; however, we do not observe significant differences in the range of crystallization temperatures between enriched (∼960–840 °C) and depleted groups (∼940–830 °C). Bulk-rock Sr and Nd isotopes are also remarkably homogeneous and show no apparent difference between enriched (εNdi = 0·1 to –0·1; 87Sr/86Sri = 0·70420–0·70413) and depleted groups (εNdi = 0·3 to –0·4; 87Sr/86Sri = 0·70424–0·70411). Calculated amphibole-equilibrium melt compositions using chemometric equations indicate that melts were highly fractionated (molar Mg# <50), andesitic to dacitic in composition, and were much more evolved than bulk lower continental crust or primitive basalts and andesites predicted to have formed from hydrous melting of mantle-wedge peridotite beneath an arc. We suggest that melts originated from a common, isotopically homogeneous source beneath the Malaspina Pluton, and differences between enriched and depleted trace-element groups reflect varying contributions from subducted sediment-derived melt and sediment-derived fluid, respectively. Our data demonstrate that andesites and dacites were the dominant melts that intruded the lower crust, and their compositions mirror middle and upper bulk-continental crust estimates. Continental crust-like geochemical signatures were acquired in the source region from interaction between hydrous mantle-wedge melts and recycled subducted sediment rather than assimilation and/or remelting of pre-existing lower continental crust.
more »
« less
- PAR ID:
- 10323890
- Date Published:
- Journal Name:
- Journal of Petrology
- Volume:
- 62
- Issue:
- 9
- ISSN:
- 0022-3530
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The composition of Earth's mantle, continental crust, and oceanic crust continuously evolve in response to the dynamic forces of plate tectonics and mantle convection. The classical view of terrestrial geochemistry, where mid‐ocean ridges sample mantle previously depleted by continental crust extraction, broadly explains the composition of the oceanic and continental crust but is potentially inconsistent with observed slab subduction to the lower mantle and oceanic crust accumulation in the deep mantle. We develop a box model to explore the key processes controlling crust‐mantle chemical evolution. The model mimics behaviors observed in thermochemical convection simulations including subducted oceanic crust separating and accumulating in the deep mantle. We demonstrate that oceanic crust accumulation strongly depletes the mantle independently of continental crust extraction. Slab stalling depths and continental crust recycling rates also affect the extent and location of mantle depletion. We constrain model regimes that reproduce oceanic and continental crust compositions using Markov chain Monte Carlo sampling. Some regimes deplete the lower mantle more than the upper mantle, contradicting the assumption of a more enriched lower mantle. All regimes require oceanic crust accumulation in the mantle. Though a small fraction of the mantle mass, accumulated oceanic crust can sequester trace element budgets exceeding the continental crust, depleting the mantle more than continental crust extraction alone. Oceanic crust accumulation may therefore be as important as continental crust extraction in depleting the mantle, contradicting the paradigmatic complementarity of depleted mantle and continental crust. Instead, depleted mantle is complementary to continental crust plus sequestered oceanic crust.more » « less
-
Abstract Cerro Machín, a volcano located in the northern segment of the Andes, is considered one of the most dangerous volcanoes in Colombia with an explosive record that involves at least five plinian events. Prior studies focused on the last dome-building eruption have suggested the presence of a water-rich mid-crustal magma reservoir. However, no direct volatile measurements have been published and little work has been completed on the explosive products of the volcano. Here, we study the largest known eruption of Cerro Machín volcano which occurred 3600 years BP producing dacitic pyroclastic fall deposits that can be traced up to 40 km from the vent. Lapilli pumice clasts have a mineral assemblage of plagioclase, amphibole, quartz, and biotite phenocrysts, with accessory olivine, Fe–Ti oxides, and apatite. The occurrence of Fo89–92 olivine rimmed by high Mg# amphibole and the established high-water contents in the magma imply the presence of magma near or at water saturation at pressures > ~ 500 MPa. Measurements of up to 10.7 wt % H2O in melt inclusions hosted in plagioclase and quartz in the 3600 years BP eruption products support the idea that Cerro Machín is a remarkably water-rich volcanic system. Moreover, this is supported by measurements of ~103 to 161 ppm H2O in plagioclase phenocrysts. The application of two parameterizations of water partitioning between plagioclase and silicate melt allows us to use our water in plagioclase measurements to estimate equilibrium melt water contents of 5 ± 1 wt % to 11 ± 2 wt % H2O, which are in good agreement with the water contents we measured in melt inclusions. Results of amphibole geobarometry are consistent with a magma reservoir stored in the mid-to-lower crust at a modal pressure of 700 ± 250 MPa, corresponding to a depth of ~25 km. Minor crystallization in the shallow crust is also recorded by amphibole barometry and calculated entrapment pressures in melt inclusions. Amphibole is present as unzoned and zoned crystals. Two populations of unzoned amphibole crystals are present, the most abundant indicate crystallization conditions of 853 ± 26°C (1 se; standard error), and the less abundant crystallized at an average temperature of 944 ± 24°C (1 se). Approximately 18% of the amphibole crystals are normally or reversely zoned, providing evidence for a minor recharge event that could have been the trigger mechanism for the explosive eruption. Plagioclase crystals also show normal and reverse zoning. The moderate Ni concentrations (<1600 μg/g) in the high-Fo olivine xenocrysts suggest that Cerro Machín primary magmas are generated by inefficient interaction of mantle peridotite with a high-silica melt produced by slab melting of basaltic material. Some sediment input is also suggested by the high Pb/Th (>2.2) and Th/La (0.3–0.4) ratios. Whole rock chemistry reveals heavy rare earth element (HREE) depletion and Sr enrichment that likely formed during the crystallization of garnet and amphibole in the upper part of the mantle or lower portion of the crust, promoting the formation of water-rich dacitic magma that was then injected into the middle-to-lower crust. Textural and compositional differences in the crystal cargo that erupted during dome-building and plinian events support the idea that large volumes of magma recharge lead to effusive eruptions, while only small recharge events are needed to trigger plinian eruptions at Cerro Machín.more » « less
-
null (Ed.)Abstract The Okataina Volcanic Centre (OVC), located in the Taupo Volcanic Zone, New Zealand, is a dominantly rhyolitic magmatic system in an arc setting, where eruptions are thought to be driven by mafic recharge. Here, Sr–Pb isotopes, and compositional and textural variations in plagioclase phenocrysts from 10 rhyolitic deposits (two caldera, one immediately post-caldera, four intra-caldera, and three extra-caldera) are used to investigate the OVC magmatic system and identify the sources and assimilants within this diverse mush zone. Plagioclase interiors exhibit normal and reverse zoning, and are commonly in disequilibrium with their accompanying glass, melt inclusions, and whole-rock compositions. This indicates that the crystals nucleated in melts that differed from their carrier magma. In contrast, the outermost rims of crystals exhibit normal zoning that is compositionally consistent with growth in cooling and fractionating melts just prior to eruption. At the intra-crystal scale, the total suite of 87Sr/86Sr ratios are highly variable (0·7042–0·7065 ± 0·0004 average 2SE); however, the majority (95 %) of the crystals are internally homogeneous within error. At whole-crystal scale (where better precision is obtained), 87Sr/86Sr ratios are much more homogeneous (0·70512–0·70543 ± 0·00001 average 2SE) and overlap with their host whole-rock Sr isotopic ratios. Whole-crystal Pb isotopic ratios also largely overlap with whole-rock Pb ratios. The plagioclase and whole-rock isotopic compositions indicate significant crustal assimilation (≥20 %) of Torlesse-like metasediments (local basement rock) by a depleted mid-ocean ridge mantle magma source, and Pb isotopes require variable fluid-dominant subduction flux. The new data support previous petrogenetic models for OVC magmas that require crystal growth in compositionally and thermally distinct magmas within a complex of disconnected melt-and-mush reservoirs. These reservoirs were rejuvenated by underplating basaltic magmas that serve as an eruption trigger. However, the outermost rims of the plagioclase imply that interaction between silicic melts and eruption-triggering mafic influx is largely limited to heat and volatile transfer, and results in rapid mobilization and syn-eruption mixing of rhyolitic melts. Finally, relatively uniform isotopic compositions of plagioclase indicate balanced contributions from the crust and mantle over the lifespan of the OVC magmatic system.more » « less
-
Abstract Combined Hf-O isotopic analyses of zircons from tuffs and lavas within the Sierra Madre Occidental (SMO) silicic large igneous province are probes of petrogenetic processes in the lower and upper crust. Existing petrogenetic and tectonomagmatic models diverge, having either emphasized significant crustal reworking of hydrated continental lithosphere in an arc above the retreating Farallon slab or significant input of juvenile mantle melts through a slab window into an actively stretching continental lithosphere. New isotopic data are remarkably uniform within and between erupted units across the spatial and temporal extent of the SMO, consistent with homogeneous melt production and evolution. Isotopic values are consistent with enriched mantle magmas (80%) that assimilated Proterozoic paragneisses (~20%) from the lower crust. δ18Ozircon values are consistent with fractionation of mafic magma and not with assimilation of hydrothermally altered upper crust, suggesting that the silicic magmas evolved at depth. Isotopic data agree with previous interpretations where voluminous juvenile melts entered the lithosphere during the transition from a continental arc experiencing slab rollback (Late Eocene) to the arrival of a subducting slab window (Oligocene and Early Miocene) and failure of the upper plate leading to the opening of the Gulf of California (Late Miocene). An anomalously large heat flux and extension of the upper plate allow for the sustained fractionation of the voluminous SMO magmas and assimilation of the lower crust.more » « less
An official website of the United States government

