- Award ID(s):
- 1901827
- NSF-PAR ID:
- 10351519
- Date Published:
- Journal Name:
- Geosphere
- ISSN:
- 1553-040X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract We present microbeam major- and trace-element data from 14 monzodiorites collected from the Malaspina Pluton (Fiordland, New Zealand) with the goal of evaluating processes involved in the production of andesites in lower arc crust. We focus on relict igneous assemblages consisting of plagioclase and amphibole with lesser amounts of clinopyroxene, orthopyroxene, biotite and quartz. These relict igneous assemblages are heterogeneously preserved in the lower crust within sheeted intrusions that display hypersolidus fabrics defined by alignment of unstrained plagioclase and amphibole. Trace-element data from relict igneous amphiboles in these rocks reveal two distinct groups: one relatively enriched in high field strength element concentrations and one relatively depleted. The enriched amphibole group has Zr values in the range of ∼25–110 ppm, Nb values of ∼5–32 ppm, and Th values up to 2·4 ppm. The depleted group, in contrast, shows Zr values <35 ppm and Nb values <0·25 ppm, and Th is generally below the level of detection. Amphibole crystallization temperatures calculated from major elements range from ∼960 to 830 °C for all samples in the pluton; however, we do not observe significant differences in the range of crystallization temperatures between enriched (∼960–840 °C) and depleted groups (∼940–830 °C). Bulk-rock Sr and Nd isotopes are also remarkably homogeneous and show no apparent difference between enriched (εNdi = 0·1 to –0·1; 87Sr/86Sri = 0·70420–0·70413) and depleted groups (εNdi = 0·3 to –0·4; 87Sr/86Sri = 0·70424–0·70411). Calculated amphibole-equilibrium melt compositions using chemometric equations indicate that melts were highly fractionated (molar Mg# <50), andesitic to dacitic in composition, and were much more evolved than bulk lower continental crust or primitive basalts and andesites predicted to have formed from hydrous melting of mantle-wedge peridotite beneath an arc. We suggest that melts originated from a common, isotopically homogeneous source beneath the Malaspina Pluton, and differences between enriched and depleted trace-element groups reflect varying contributions from subducted sediment-derived melt and sediment-derived fluid, respectively. Our data demonstrate that andesites and dacites were the dominant melts that intruded the lower crust, and their compositions mirror middle and upper bulk-continental crust estimates. Continental crust-like geochemical signatures were acquired in the source region from interaction between hydrous mantle-wedge melts and recycled subducted sediment rather than assimilation and/or remelting of pre-existing lower continental crust.more » « less
-
Interpretation of geochronological and petrological data from partially-melted granulite is challenging. However, integration of multiple chronometers and mineral assemblage diagrams (MAD) can be used to estimate the nature and duration of processes. Excellent lower-crustal exposures of garnet granulite from the Malaspina Pluton, Fiordland New Zealand provide an ideal place to employ this kitchen sink approach. We use zircon U-Pb ages from LA-ICPMS, SHRIMP-RG, and CA-TIMS, garnet Lu-Hf and Sm-Nd ages, and MAD in order to evaluate local partial melting vs. melt injection, equilibrium volumes, P-T conditions, and the duration of lower crustal thermal events. Host diorite (H), garnet-clinopyroxene reaction zones (GRZ), coarse garnet selvages, and tonalite veins provide a record of intrusion and granulite facies partial melting. Zircon U-Pb ages range from 123 to 107 Ma (all); LA-ICPMS ages contain the entire range; CA-TIMS ages range from 118.30±0.13 to 115.7±0.18 Ma; and SHRIMP-RG ages range from 121.4±2 to 109.8±1.8 Ma. The latter two techniques are interpreted to indicate primary igneous crystallization from ~119 to ~116 Ma and the youngest ~110 Ma ages are interpreted as metamorphic zircon growth. Garnet ages for ~1 cm grains are ~113 Ma (Lu-Hf & Sm-Nd) and record metamorphic growth, and <0.3 mm grains with Sm-Nd ages from 113 to 104 Ma reflect high temperature intracrystalline diffusion and isotopic closure during cooling to amphibolite facies. Zircon trace-element compositions indicate 2 distinct crystallization trends reflecting evolution of primary magma batches. MAD indicate that garnet was not in equilibrium with sampled rock compositions. Instead, garnet shows apparent equilibrium with a modeled mixture of the GRZ and the H and grew in equilibrium with an effective bulk composition that shifted toward the leucosome. This would produce the observed increase in garnet grossular content. We conclude that: Malaspina rocks from Crooked Arm preserve evidence for 2 igneous layers which evolved as discrete magmas, igneous crystallization lasted 2 to 3 m.y., granulite metamorphism peaked ~ 3 m.y. after intrusion, metamorphism lasted ≥3 m.y., cooling occurred at ~20°C/m.y., and granulite minerals equilibrated with a mixture of solid phases and melt at ~14 kbar and 920°C (based on garnet compositions and MAD).more » « less
-
Abstract Water is key to plate tectonics on Earth, which, in turn, is vital to the production of continental crust. Although arc lavas erupt in a volatile‐rich state and calc‐alkaline arc plutons are distinguished by the presence of hydrous minerals such as hornblende and biotite, the water content of arc magmas earlier in their evolution—in the deep crust—remains poorly constrained. Here, we report H2O contents in nominally anhydrous minerals measured in situ on petrographic thin sections by secondary ion mass spectrometry of Proterozoic deep crustal xenoliths from Colorado, USA. Clinopyroxene, orthopyroxene, and garnet contain average H2O contents ranging from 75–760, 233–410, and 42–139 ppm, respectively. Reconstructed bulk rock H2O contents range from ~60 to ~650 ppm. Intermineral H2O ratios overlap experimental mineral/melt
D values and are used to calculate H2O of melts last in equilibrium with the xenoliths. We propose that these xenoliths represent cumulates fractionated from a primitive, hydrous (≥1 wt.% H2O) melt at high (~1 GPa) pressures, similar to conditions in modern subduction zones and potentially associated with widespread arc accretion that formed the core of North America in the Precambrian. -
Abstract Dunite, harzburgite, and clinopyroxenite xenoliths from Kharchinsky volcano, Kamchatka, have abundances and ratios of incompatible trace elements similar to those in arc volcanic rocks (elevated Ba/Th, La/Yb, Nd/Hf, and Sr/Y). All orthopyroxenes and some clinopyroxenes in the peridotites have U‐shaped rare‐earth element patterns. Negative Ce anomalies are present in orthopyroxenes with Ce/Ce* as low as 0.01 and down to 0.22 in whole‐rock peridotite data. Ce anomaly growth is linked to increasing La/Sm and enrichments in Rb, U, Pb, and Ba over La and Ce. Isotopes (Pb, Sr, Nd, and Hf) indicate pelagic sediment, and hydrothermal crusts play no role in Ce anomaly development. Instead, Ce anomalies appear to be products of fluid transport and elemental scavenging under oxidizing conditions beneath the deep forearc. Textures and compositions of aluminous green spinels indicate most of the peridotites were partially melted and recrystallized at depth. Veins and pockets of amphibole reflect impregnation late in the petrogenesis of the rocks by melts similar to Kamchatka basalts. Orthopyroxenite xenoliths are fine‐grained with fibrous orthopyroxene that has high‐Mg/Mg + Fe (up to 0.96) and generally lower CaO and Al2O3compared to peridotite orthopyroxenes and perhaps formed by reaction of siliceous fluids with olivine. Kharchinsky xenoliths have Pb, Sr, and Nd isotopes similar to Kamchatka volcanic rocks, but Hf isotopes in clinopyroxenites and gabbros are more radiogenic by 1–3 epsilon units. Patterns in isotopic data indicate a compositional change in the source of Kamchatka volcanism within the past 20 million years.
-
Zirconium (Zr) stable isotope variations occur among co-existing Zr-rich accessory phases as well as at the bulk-rock scale, but the petrologic mechanism(s) responsible for Zr isotope fractionation during magmatic differentiation remain unclear. Juvenile magma generation and intra-crustal differentiation in convergent continental margins may play a crucial role in developing Zr isotope variations, and the Northern Volcanic Zone of the Andes is an ideal setting to test this hypothesis. To investigate the influence of these processes on Zr stable isotope compositions, we report δ94/90ZrNIST of whole rock samples from: 1) juvenile arc basalts from the Quaternary Granatifera Tuff, Colombia; 2) lower crust-derived garnet pyroxenites (i.e., arclogites), hornblendites, and gabbroic cumulates found in the same unit; and 3) felsic volcanic products from the Doña Juana Volcanic Complex, a dacitic composite volcano in close proximity to and partially covering the Granatifera Tuff. The basalts have δ94/90ZrNIST values ranging from −0.025 ± 0.018 ‰ to +0.003 ± 0.015 ‰ (n = 8), within the range of mid-ocean ridge basalts. The dacites have δ94/90ZrNIST values ranging from +0.008 ± 0.013 ‰ to +0.043 ± 0.015 ‰ (n = 14), slightly positive relative to the Granatifera and mid-ocean ridge basalts. In contrast, the (ultra)mafic cumulates have highly variable, predominantly positive δ94/90ZrNIST values, ranging from −0.134 ± 0.012 ‰ to +0.428 ± 0.012 ‰ (n = 15). Individual grains and mineral fractions of major rock-forming phases, including garnet (n = 21), amphibole (n = 9), and clinopyroxene (n = 18), were analyzed from 8 (ultra)mafic cumulates. The mineral fractions record highly variable Zr isotopic compositions, with inter-mineral fractionation (Δ94/90Zrgarnet-amphibole) up to 2.067 ‰. Recent ab initio calculations of Zr–O bond force constants in rock-forming phases predict limited inter-mineral Zr isotope fractionation in high-temperature environments, suggesting that the large fractionations we observe are not the product of vibrational equilibrium processes. Instead, we propose a scenario in which large Zr isotopic fractionations develop kinetically, induced by sub-solidus Zr diffusion between coexisting phases via changes in Zr distribution coefficients that arise from changes in temperature. Altogether, Zr isotope variability in this calc-alkaline continental arc setting exhibits no correlation with indices of magmatic differentiation (e.g., Mg#, SiO2), and is not a simple function of fractional crystallization. Furthermore, the garnet clinopyroxenite cumulates studied here represent density-unstable lower arc crust material; consequently, material with isotopically variable δ94/90Zr can be recycled into the mantle as a consequence of lower crustal foundering.more » « less