The textures of outcrop and near-surface exposures of the massive magnetite orebodies (>90 vol % magnetite) at the Plio-Pleistocene El Laco iron oxide-apatite (IOA) deposit in northern Chile are similar to basaltic lava flows and have compositions that overlap high- and low-temperature hydrothermal magnetite. Existing models— liquid immiscibility and complete metasomatic replacement of andesitic lava flows—attempt to explain the genesis of the orebodies by entirely igneous or entirely hydrothermal processes. Importantly, those models were developed by studying only near-surface and outcrop samples. Here, we present the results of a comprehensive study of samples from outcrop and drill core that require a new model for the evolution of the El Laco ore deposit. Backscattered electron (BSE) imaging, electron probe microanalysis (EPMA), and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) were used to investigate the textural and compositional variability of magnetite and apatite from surface and drill core samples in order to obtain a holistic understanding of textures and compositions laterally and vertically through the orebodies. Magnetite was analyzed from 39 surface samples from five orebodies (Cristales Grandes, Rodados Negros, San Vicente Alto, Laco Norte, and Laco Sur) and 47 drill core samples from three orebodies (Laco Norte, Laco Sur, andmore »
The Shepherd Mountain iron ore deposit in Southeast Missouri, USA – An extension of the Pilot Knob magmatic-hydrothermal ore system: Evidence from iron oxide chemistry
- Award ID(s):
- 1944552
- Publication Date:
- NSF-PAR ID:
- 10323926
- Journal Name:
- Ore Geology Reviews
- Volume:
- 141
- Issue:
- C
- Page Range or eLocation-ID:
- 104633
- ISSN:
- 0169-1368
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Iron oxide-copper-gold (IOCG) deposits are major sources of Cu, contain abundant Fe-oxides and may contain Au, Ag, Co, rare earth elements (REE), U and other metals as economically important byproducts in some deposits. They form by hydrothermal processes, but the source of the metals and ore fluid(s) is still debated. We investigated the geochemistry of magnetite from the manto and breccia ore bodies at the Mina Justa IOCG deposit in Peru to assess the source of the iron oxides and their relationship with the economic Cu mineralization. We identified three magnetite types: Type Inclusion (I) is only found in the manto, is the richest in trace elements, and crystallized between 459 - 707 °C; Type Dark (D) has no visible inclusions and formed at around 543 °C; and Type Bright (B) has no inclusions, has the highest Fe content, and formed at around 443 °C. Magnetite samples from Mina Justa yielded an average δ56Fe ± 2σ value of 0.28 ± 0.05‰ (n=9), an average δ18O ± 2σ value 2.19 ± 0.45‰ (n=9), and Δ’17O values that range between -0.075‰ and -0.047‰. Sulfide separates yielded δ65Cu values that range from -0.32‰ to -0.09‰. The trace element compositions and textures of magnetite,more »
-
Magnetite is the most important iron ore in iron oxide-apatite (IOA) deposits which represent the Cu-poor endmember of the iron oxide-copper–gold (IOCG) clan. Magnetite chemistry has been used as a petrogenetic indicator to identify the geological environment of ore formation and as a fingerprint of the source reservoir of iron. In this study, we present new textural and microanalytical EPMA and LA-ICP-MS data of magnetite from Carmen, Fresia, Mariela and El Romeral IOA deposits located in the Cretaceous Coastal Cordillera of northern Chile. We also provide a comprehensive summary and discussion of magnetite geochemistry from Andean IOAs including Los Colorados, Cerro Negro Norte, El Romeral (Chilean Iron Belt) and the Pliocene El Laco IOA deposit located in the Central Volcanic Zone of the Chilean Andes. Microtextures coupled with geochemical data were used to define and characterize the occurrence of different magnetite types. Magnetite exhibits a variety of textural features including oscillatory zoning, colloform banding, re-equilibration textures, exsolution lamellae and symplectites. The magmatic vs. hydrothermal origin of the different magnetite types and the evolution of IOA deposits can be assessed using diagrams based on compatible trace elements. However, magnetite is very susceptible to hydrothermal alteration and to both textural and compositionalmore »
-
Iron oxide-copper-gold (IOCG) deposits are major sources of Cu, contain abundant Fe-oxides and may contain Au, Ag, Co, rare earth elements (REE), U and other metals as economically important byproducts in some deposits. They form by hydrothermal processes, but the source of the metals and ore fluid(s) is still debated. We investigated the geochemistry of magnetite from the manto and breccia ore bodies at the Mina Justa IOCG deposit in Peru to assess the source of the iron oxides and their relationship with the economic Cu mineralization. We identified three magnetite types: Type Inclusion (I) is only found in the manto, is the richest in trace elements, and crystallized between 459 - 707 °C; Type Dark (D) has no visible inclusions and formed at around 543 °C; and Type Bright (B) has no inclusions, has the highest Fe content, and formed at around 443 °C. Magnetite samples from Mina Justa yielded an average δ56Fe ± 2σ value of 0.28 ± 0.05‰ (n=9), an average δ18O ± 2σ value 2.19 ± 0.45‰ (n=9), and Δ’17O values that range between -0.075‰ and -0.047‰. Sulfide separates yielded δ65Cu values that range from -0.32‰ to -0.09‰. The trace element compositions and textures of magnetite,more »