Carbonyl bond hydroboration is a valuable synthetic route to functionalized alcohols but relies on sometimes unselective and sluggish reagents. While rapid and selective aldehyde and ketone hydroboration mediated by trisamidolanthanide catalysts is known, the origin of the selectivity is not well-understood and is the subject of this contribution. Here the aldehyde and ketone HBpin hydroboration reaction mechanisms catalyzed by La[N(SiMe 3 ) 2 ] 3 are investigated both experimentally and theoretically. The results support initial carbonyl oxygen coordination to the acidic La center, followed by intramolecular ligand-assisted hydroboration of the carbonyl moiety by bound HBpin. Interestingly, ketone hydroboration has a higher energetic barrier than that of aldehydes due to the increased steric encumbrance and decreased electrophilicity. Utilizing NMR spectroscopy and X-ray diffraction, a bidentate acylamino lanthanide complex associated with the aldehyde hydroboration is isolated and characterized, consistent with the relative reaction rates. Furthermore, an aminomonoboronate–lanthanide complex produced when the La catalyst is exposed to excess HBpin is isolated and characterized by X-ray diffraction, illuminating unusual aminomonoboronate coordination. These results shed new light on the origin of the catalytic activity patterns, reveal a unique ligand-assisted hydroboration pathway, and uncover previously unknown catalyst deactivation pathways.
more »
« less
Vanadium-Catalyzed Stereo- and Regioselective Hydroboration of Alkynes to Vinyl Boronates
Molecular complexes of vanadium catalyze cis-selective anti-Markovnikov hydroboration of alkynes to generate vinyl boronate esters with appreciable turnover numbers of up to 4000 at room temperature. This represents the first example of the use of vanadium in homogeneous catalytic hydroboration of alkynes. The method is tolerant to various functional groups, including C═C double bonds. Accordingly, 1-hexen-5-yne can be quantitatively and selectively reduced at the triple bond, leaving the double bond unaffected. Preliminary computational analysis of the catalytic cycle reveals both two-state reactivity and previously unknown complexity associated with the redox-active ligand. Specifically, it was found that the ligand can shuttle up to two electrons back-and-forth to and from the metal, which thus adapts three different oxidation states on the catalytic reaction coordinate.
more »
« less
- Award ID(s):
- 1900500
- PAR ID:
- 10323933
- Date Published:
- Journal Name:
- ACS Catalysis
- Volume:
- 12
- ISSN:
- 2155-5435
- Page Range / eLocation ID:
- 5425 to 5429
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
ABSTRACT: Enantiopure homoallylic boronate esters are versatile intermediates because the C–B bond in these com-pounds can be stereospecifically transformed into C–C, C–O and C–N bonds. Regio- and enantioselective synthesis of these precursors from 1,3-dienes has few precedents in the literature. We have identified reaction conditions and ligands for the synthesis of nearly enantiopure (er >97:3 to >99:1) homoallylic boronate esters via a rarely seen cobalt-catalyzed [4,3]-hydroboration of 1,3-dienes. Monosubstituted or 2,4-disubstituted linear dienes undergo highly efficient, regio- and enanti-oselective hydroboration with HBPin catalyzed by [(L*)Co]+[BARF]–, where L* is typically a chiral bis-phosphine ligand with a narrow bite angle. Several such ligands (examples: i-PrDuPhos, QuinoxP*, Duanphos and, BenzP*) that give high enantioselectivities for the [4,3]-hydroboration product have been identified. In addition, the equally challenging problem of regioselectivity is uniquely solved with a dibenzooxaphosphole ligand, (R,R)-MeO-BIBOP. A cationic cobalt(I) complex of this ligand is a very efficient (TON >960) catalyst, while providing excellent regioselectivities (rr >98:2) and enantioselectiv-ities (er >98:2) for a broad range of substrates. A detailed computational investigation of the reactions using Co-complexes from two widely different ligands (BenzP* and MeO-BIBOP) employing B3LYP-D3 density functional theory provides key insights into the mechanism and the origins of selectivities. The computational results are in full agreement with the exper-iments. For the complexes we have examined thus far, the relative stabilities of the diastereomeric diene-bound complexes [(L*)Co(4-diene)]+ leads to the initial diastereofacial selectivity, which in turn is retained in the subsequent steps, providing exceptional enantioselectivity for the reactions.more » « less
-
Hydroboration of terminal and internal alkynes has been carried out with extremely high efficiency by using a bench-stable and inexpensive cobalt( ii ) coordination polymer as a precatalyst in the presence of potassium tert -butoxide (KO t Bu). Good to high yields of alkenylboronate esters were obtained in 5–30 min with low catalyst loading (0.025 mol%). Good chemoselectivity for alkyne vs alkene hydroboration was observed. A possible catalytic cycle involving the in situ formation of an active Co–H species is proposed based on additional experimental results. This work provides valuable implications for the design of efficient and practical base metal catalysts.more » « less
-
An ionic metal–organic-framework (MOF) containing nanoscale channels was readily assembled from ditopic 4′-pyridyl-2,2′:6′,2′′-terpyridine (pytpy) and a simple iron( ii ) salt. X-ray structural analysis revealed a two-dimensional grid-like framework assembled by classic octahedral (pytpy) 2 Fe II cations as linkers (with pytpy as a new ditopic pyridyl ligand) and octa-coordinate FeCl 2 centers as nodes. The layer-by-layer assembly of the 2-D framework resulted in the formation of 3-D porous materials consisting of nano-scale channels. The charges of the cationic framework were balanced with anionic Cl 3 FeOFeCl 3 in its void channels. The new Fe-based MOF material was employed as a precatalyst for syn -selective hydroboration of alkynes under mild, solvent-free conditions in the presence of an activator, leading to the synthesis of a range of trans -alkenylboronates in good yields. The larger scale applicability and recyclability of the new MOF catalyst was further explored. This represents a rare example of an ionic MOF material that can be utilized in hydroboration catalysis.more » « less
An official website of the United States government

