skip to main content


Title: What controls electrostatic vs electrochemical response in electrolyte-gated materials? A perspective on critical materials factors
Electrolyte-gate transistors are a powerful platform for control of material properties, spanning semiconducting behavior, insulator-metal transitions, superconductivity, magnetism, optical properties, etc. When applied to magnetic materials, for example, electrolyte-gate devices are promising for magnetoionics, wherein voltage-driven ionic motion enables low-power control of magnetic order and properties. The mechanisms of electrolyte gating with ionic liquids and gels vary from predominantly electrostatic to entirely electrochemical, however, sometimes even in single material families, for reasons that remain unclear. In this Perspective, we compare literature ionic liquid and ion gel gating data on two rather different material classes—perovskite oxides and pyrite-structure sulfides—seeking to understand which material factors dictate the electrostatic vs electrochemical gate response. From these comparisons, we argue that the ambient-temperature anion vacancy diffusion coefficient ( not the vacancy formation energy) is a critical factor controlling electrostatic vs electrochemical mechanisms in electrolyte gating of these materials. We, in fact, suggest that the diffusivity of lowest-formation-energy defects may often dictate the electrostatic vs electrochemical response in electrolyte-gated inorganic materials, thereby advancing a concrete hypothesis for further exploration in a broader range of materials.  more » « less
Award ID(s):
2011401
NSF-PAR ID:
10323943
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
APL Materials
Volume:
10
Issue:
4
ISSN:
2166-532X
Page Range / eLocation ID:
040901
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. CdO has drawn much recent interest as a high-room-temperature-mobility oxide semiconductor with exciting potential for mid-infrared photonics and plasmonics. Wide-range modulation of carrier density in CdO is of interest both for fundamental reasons (to explore transport mechanisms in single samples) and for applications (in tunable photonic devices). Here, we thus apply ion-gel-based electrolyte gating to ultrathin epitaxial CdO(001) films, using transport, x-ray diffraction, and atomic force microscopy to deduce a reversible electrostatic gate response from −4 to +2 V, followed by rapid film degradation at higher gate voltage. Further advancing the mechanistic understanding of electrolyte gating, these observations are explained in terms of low oxygen vacancy diffusivity and high acid etchability in CdO. Most importantly, the 6-V-wide reversible electrostatic gating window is shown to enable ten-fold modulation of the Hall electron density, a striking voltage-induced metal–insulator transition, and 15-fold variation of the electron mobility. Such modulations, which are limited only by unintentional doping levels in ultrathin films, are of exceptional interest for voltage-tunable devices. 
    more » « less
  2. Abstract

    Electric-double-layer (EDL) gated transistors use ions in an electrolyte to induce charge in the channel of the transistor by field-effect. Because a sub-nanometer gap capacitor is created at the electrolyte/channel interface, large capacitance densities (∼µF cm−2) corresponding to high sheet carrier densities (1014cm−2) can be induced, exceeding conventional gate dielectrics by about one order of magnitude. Because it is an interfacial technique, EDL gating is especially effective on two-dimensional (2D) crystals, which—at the monolayer limit—are basically interfaces themselves. Both solid polymer electrolytes and ionic liquids are routinely used as ion-conducting gate dielectrics, and they have provided access to regimes of transport in 2D materials that would be inaccessible otherwise. The technique, now widely used, has enabled the 2D crystal community to study superconductivity, spin- and valleytronics, investigate electrical and structural phase transitions, and create abruptp-njunctions to generate tunneling, among others. In addition to using EDL gating as a tool to investigate properties of the 2D crystals, more recent efforts have emerged to engineer the electrolyte to add new functionality and device features, such as synaptic plasticity, bistability and non-volatility. Example of potential applications include neuromorphic computing and non-volatile memory. This review focuses on using ions forelectrostaticcontrol of 2D crystal transistors both to uncover basic properties of 2D crystals, and also to add new device functionalities.

     
    more » « less
  3. Abstract

    Recent work that establishes a picture of the driving forces that govern material transformations and degradation in electrochemical environments to enable the ab initio design of electrochemical materials is highlighted. Select prototype systems are used to describe how the interplay betweenmaterials propertiessuch as crystal field splitting, band edge energies, surface termination, material length scale, dielectric constant, and isoelectric point, andelectrolyte propertiessuch as pH and ion type, impacts electrochemical behavior—i.e., redox potentials, reaction enthalpies, reactivity, and decoupled ionic/electronic processes. Ab initio modeling of charged defects and intercalants within the grand canonical unified electrochemical band‐diagram (UEB) framework is shown to enable the quantitative prediction of electrochemical materials behavior. UEB combines electrochemical theory, charged defect theory, and band diagram descriptions and can be used both for materials discovery and development. First, a pedagogical description of the UEB framework is presented, and then the application of this framework to reveal mechanisms for high rate electronic charge storage in cation incorporated α‐MnO2and λ‐MnO2, high desalination efficiency of thin‐film NaMn4O8, and the flat charge/discharge profile of FePO4is reviewed. Finally, new prospects for the application of the UEB framework to electrolyte design, interfacial engineering, and catalysis are suggested.

     
    more » « less
  4. Solid-state batteries (SSBs) hold the potential to enhance the energy density, power density, and safety of conventional lithium-ion batteries. The theoretical promise of SSBs is predicated on the mechanistic design and comprehensive analysis of various solid–solid interfaces and microstructural features within the system. The spatial arrangement and composition of constituent phases (e.g., active material, solid electrolyte, binder) in the solid-state cathode dictate critical characteristics such as solid–solid point contacts or singularities within the microstructure and percolation pathways for ionic/electronic transport. In this work, we present a comprehensive mesoscale discourse to interrogate the underlying microstructure-coupled kinetic-transport interplay and concomitant modes of resistances that evolve during electrochemical operation of SSBs. Based on a hierarchical physics-based analysis, the mechanistic implications of solid–solid point contact distribution and intrinsic transport pathways on the kinetic heterogeneity is established. Toward designing high-energy-density SSB systems, the fundamental correlation between active material loading, electrode thickness and electrochemical response has been delineated. We examine the paradigm of carbon-binder free cathodes and identify design criteria that can facilitate enhanced performance with such electrode configurations. A mechanistic design map highlighting the dichotomy in kinetic and ionic/electronic transport limitations that manifest at various SSB cathode microstructural regimes is established. 
    more » « less
  5. Abstract

    Solid-state control of the thermal conductivity of materials is of exceptional interest for novel devices such as thermal diodes and switches. Here, we demonstrate the ability tocontinuouslytune the thermal conductivity of nanoscale films of La0.5Sr0.5CoO3-δ(LSCO) by a factor of over 5, via a room-temperature electrolyte-gate-induced non-volatile topotactic phase transformation from perovskite (withδ≈ 0.1) to an oxygen-vacancy-ordered brownmillerite phase (withδ= 0.5), accompanied by a metal-insulator transition. Combining time-domain thermoreflectance and electronic transport measurements, model analyses based on molecular dynamics and Boltzmann transport equation, and structural characterization by X-ray diffraction, we uncover and deconvolve the effects of these transitions on heat carriers, including electrons and lattice vibrations. The wide-range continuous tunability of LSCO thermal conductivity enabled by low-voltage (below 4 V) room-temperature electrolyte gating opens the door to non-volatile dynamic control of thermal transport in perovskite-based functional materials, for thermal regulation and management in device applications.

     
    more » « less