skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Ring opening polymerization of β-acetoxy-δ-methylvalerolactone, a triacetic acid lactone derivative
We report here the synthesis and polymerization of a novel disubstituted valerolactone, β-acetoxy-δ-methylvalerolactone, derived from the renewable feedstock triacetic acid lactone (TAL). The bulk polymerization proceeds to 45% equilibrium monomer conversion at room temperature using diphenyl phosphate as the organic catalyst. The resultant amorphous material displays a glass transition temperature of 25 °C. The ring opening polymerization (ROP) behavior of the disubstituted valerolactone was examined, and the enthalpy () and entropy *() of polymerization were calculated to be −25 ± 2 kJ mol −1 and −81 ± 5 mol −1 K −1 , respectively. The polymerization kinetics were also measured and compared to those of other substituted valerolactones reported in the literature. This report is the first to demonstrate the successful ROP of a disubstituted valerolactone as well as the first to establish the ROP of a derivative of TAL.  more » « less
Award ID(s):
1901635
PAR ID:
10323971
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Polymer Chemistry
Volume:
12
Issue:
46
ISSN:
1759-9954
Page Range / eLocation ID:
6724 to 6730
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Aqueous polymer dispersions are commodity materials produced on a multimillion-ton scale annually. Today none of these materials are biodegradable because the process by which they are made is not compatible with the synthesis of biodegradable polymers. Herein, we report a droplet microfluidic encapsulation strategy for protecting a water incompatible ring opening polymerization (ROP) catalyst from the aqueous phase, yielding biodegradable polymer particles dispersed in water. Polymerization yields 300 μm sized particles comprised of biodegradable poly(δ-valerolactone) with molecular weights up to 19.5 kg mol−1. The success of this approach relies on simultaneous precise control of the kinetics of polymerization, the rate of mass transfer, and fluid mechanics. The power of this methodology was demonstrated by the synthesis of cross-linked polymer particles through the copolymerization of bis(εcaprolactone-4-yl)propane and δ-valerolactone, producing cross-linked polymer particles with molecular weights reaching 65.3 kg mol−1. Overall, this encapsulation technique opens the door for the synthesis of biodegradable polymer latex and processable, biodegradable elastomers. 
    more » « less
  2. Abstract Bacterial poly(3-hydroxybutyrate) (P3HB) is a perfectly isotactic, crystalline material possessing properties suitable for substituting petroleum plastics, but high costs and low volumes of its production are impractical for commodity applications. The chemical synthesis of P3HB via ring-opening polymerization (ROP) of racemicβ-butyrolactone has attracted intensive efforts since the 1960s, but not yet produced P3HB with high isotacticity and molecular weight. Here, we report a route utilizing racemic cyclic diolide (rac-DL) derived from bio-sourced succinate. With stereoselective racemic catalysts, the ROP ofrac-DL under ambient conditions produces rapidly P3HB with perfect isotacticity ([mm] > 99%), high melting temperature (Tm = 171 °C), and high molecular weight (Mn = 1.54 × 105 g mol−1,Đ = 1.01). With enantiomeric catalysts, kinetic resolution polymerizations ofrac-DL automatically stops at 50% conversion and yields enantiopure (R,R)-DL and (S,S)-DL with >99%e.e. and the corresponding poly[(S)-3HB] and poly[(R)-3HB] with highTm = 175 °C. 
    more » « less
  3. Organocatalyzed ring-opening polymerization (O-ROP) of a six-five bicyclic lactone, 4,5- trans -cyclohexyl-fused γ-butyrolactone (4,5-T6GBL), can be topologically selective or living at room temperature, depending on catalyst structure. A screening of (thio)urea [(T)U] and organic base pairs revealed unique trends in reactivity for this monomer as well as the most active catalyst pairs, which were employed as received commercially to produce relatively high molecular weight ( M n up to 106 kDa), low dispersity ( Đ = 1.04) linear poly(4,5-T6GBL) in a living fashion. The ROP using a hybrid organic/inorganic pair of TU/KOMe in neat conditions led to poly(4,5-T6GBL) with even higher molecular weight ( M n = 215 kDa, Đ = 1.04). In comparison to the metal-catalyzed system, (T)U-base pairs exhibited competitive kinetics and reached higher monomer conversions, and their reactions can be performed in air. In addition, the resulting polymers required less purification to produce materials with higher onset decomposition temperature. (T)U-base pairs were selective towards linear polymerization only, whereas triazabicyclodecene can catalyze both polymerization and (quantitative) depolymerization processes, depending on reaction conditions. Cyclic polymers with M n = 41–72 kDa were selectively formed via N-heterocyclic carbene-mediated zwitterionic O-ROP. 
    more » « less
  4. Abstract Access to block copolymers from monomers that do not polymerize via a common mechanism requires initiation from a multifunctional species that allows orthogonal polymerization chemistries. We disclose a strategy to provide well‐defined polyacrylamido‐b‐polyether block copolymers by a one‐pot combination of photoiniferter polymerization and organocatalytic ring‐opening polymerization (ROP) using a hydroxy‐functionalized trithiocarbonate photoiniferter as the dual initiator at ambient temperature. Our results reveal good compatibility between the two polymerization systems and highlight that they can be performed in arbitrary order or simultaneously with good retention of the thiocarbonylthio functionality. We also demonstrate selective temporal control over the photoiniferter polymerization during concurrent ROP. We harnessed the efficiency of combining these polymerization systems to provide tailor‐made block copolymers from chemically distinct monomers. 
    more » « less
  5. Abstract Polymerization‐induced self‐assembly (PISA) has emerged as a scalable one‐pot technique to prepare block copolymer (BCP) nanoparticles. Recently, a PISA process, that results in poly(l‐lactide)‐b‐poly(ethylene glycol) BCP nanoparticles coined ring‐opening polymerization (ROP)‐induced crystallization‐driven self‐assembly (ROPI‐CDSA), was developed. The resulting nanorods demonstrate a strong propensity for aggregation, resulting in the formation of 2D sheets and 3D networks. This article reports the synthesis of poly(N,N‐dimethyl acrylamide)‐b‐poly(l)‐lactide BCP nanoparticles by ROPI‐CDSA, utilizing a two‐step, one‐pot approach. A dual‐functionalized photoiniferter is first used for controlled radical polymerization of the acrylamido‐based monomer, and the resulting polymer serves as a macroinitiator for organocatalyzed ROP to form the solvophobic polyester block. The resulting nanorods are highly stable and display anisotropy at higher molecular weights (>12k Da) and concentrations (>20% solids) than the previous report. This development expands the chemical scope of ROPI‐CDSA BCPs and provides readily accessible nanorods made with biocompatible materials. 
    more » « less