The distributed cryptocurrency networking is critical because the information delivered through it drives the mining consensus protocol and the rest of the operations. However, the cryptocurrency peer-to-peer (P2P) network remains vulnerable, and the existing security approaches are either ineffective or inefficient because of the permissionless requirement and the broadcasting overhead. We design a Lightweight and Identifier-Oblivious eNgine (LION) for the anomaly detection of the cryptocurrency networking. LION is not only effective in permissionless networking but is also lightweight and practical for the computation-intensive miners. We build LION for anomaly detection and use traffic analyses so that it minimally affects the mining rate and is substantially superior in its computational efficiency than the previous approaches based on machine learning. We implement a LION prototype on an active Bitcoin node to show that LION yields less than 1% of mining rate reduction subject to our prototype, in contrast to the state-of-the-art machine-learning approaches costing 12% or more depending on the algorithms subject to our prototype, while having detection accuracy of greater than 97% F1-score against the attack prototypes and real-world anomalies. LION therefore can be deployed on the existing miners without the need to introduce new entities in the cryptocurrency ecosystem.
more »
« less
Security Analyses of Misbehavior Tracking in Bitcoin Network
Because Bitcoin P2P networking is permissionless by the application requirement, it is vulnerable against networking threats based on identity/credential manipulations such as Sybil and spoofing attacks. The current Bitcoin implementation keeps track of its peer's networking misbehaviors through ban score. In this paper, we investigate the security problems of the ban-score mechanism and discover that the ban score is not only ineffective against the Bitcoin Message-based DoS attacks but also vulnerable to a Defamation attack. In the Defamation attack, the network adversary can exploit the ban-score mechanism to defame innocent peers.
more »
« less
- Award ID(s):
- 1922410
- PAR ID:
- 10324013
- Date Published:
- Journal Name:
- IEEE International Conference on Blockchain and Cryptocurrency (ICBC)
- Page Range / eLocation ID:
- 1 to 3
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Networkedcontrol systems are vulnerable to manipulation via data injection to observed states and control commands, resulting in undesired state trajectories and system instabilities. Adversarial attacks against such systems can be implemented in the form of undetectable attacks such that an observer never notices deviations from expected behavior. Even when protected by homomorphic encryption, these systems remain vulnerable to stealthy and perfectly undetectable attacks due to the malleability of encrypted data. This research develops a defense architecture against such undetectable attacks through the fusion of two complementary detection protocols working in conjunction with encryption. The mechanism’s strengths and weaknesses are analyzed for affine transformation-based perfectly undetectable attacks and covert attacks. The attacks are implemented against a mobile robot, and defense performance is analyzed, resulting in a robust defense mechanism that outperforms previous undetectable attack detection methods in terms of detection accuracy and reliability across the two representative attack types.more » « less
-
While the blockchain technology provides strong cryptographic protection on the ledger and the system operations, the underlying blockchain networking remains vulnerable due to potential threats such as denial of service (DoS), Eclipse, spoofing, and Sybil attacks. Effectively detecting such malicious events should thus be an essential task for securing blockchain networks and services. Due to its importance, several studies investigated anomaly detection in Bitcoin and blockchain networks, but their analyses mainly focused on the blockchain ledger in the application context (e.g., transactions) and targets specific types of attacks (e.g., double-spending, deanonymization, etc). In this study, we present a security mechanism based on the analysis of blockchain network traffic statistics (rather than ledger data) to detect malicious events, through the functions of data collection and anomaly detection. The data collection engine senses the underlying blockchain traffic and generates multi-dimensional data streams in a periodic manner. The anomaly detection engine then detects anomalies from the created data instances based on semi-supervised learning, which is capable of detecting previously unseen patterns, and we introduce our profiling-based detection engine implemented on top of AutoEncoder (AE). Our experimental results support the effectiveness of the presented security mechanism for accurate, online detection of malicious events from blockchain networking traffic data. We also show further reduction in time complexity (up to 66.8% for training and 85.7% for testing), without any performance degradation using feature prioritization compared to the utilization of the entire features.more » « less
-
Today’s smart-grids have seen a clear rise in new ways of energy generation, transmission, and storage. This has not only introduced a huge degree of variability, but also a continual shift away from traditionally centralized generation and storage to distributed energy resources (DERs). In addition, the distributed sensors, energy generators and storage devices, and networking have led to a huge increase in attack vectors that make the grid vulnerable to a variety of attacks. The interconnection between computational and physical components through a largely open, IP-based communication network enables an attacker to cause physical damage through remote cyber-attacks or attack on software-controlled grid operations via physical- or cyber-attacks. Transactive Energy (TE) is an emerging approach for managing increasing DERs in the smart-grids through economic and control techniques. Transactive Smart-Grids use the TE approach to improve grid reliability and efficiency. However, skepticism remains in their full-scale viability for ensuring grid reliability. In addition, different TE approaches, in specific situations, can lead to very different outcomes in grid operations. In this paper, we present a comprehensive web-based platform for evaluating resilience of smart-grids against a variety of cyber- and physical-attacks and evaluating impact of various TE approaches on grid performance. We also provide several case-studies demonstrating evaluation of TE approaches as well as grid resilience against cyber and physical attacks.more » « less
-
Existing score-based adversarial attacks mainly focus on crafting top-1 adversarial examples against classifiers with single-label classification. Their attack success rate and query efficiency are often less than satisfactory, particularly under small perturbation requirements; moreover, the vulnerability of classifiers with multilabel learning is yet to be studied. In this paper, we propose a comprehensive surrogate free score-based attack, named geometric score-based black-box attack (GSBAK), to craft adversarial examples in an aggressive top-K setting for both untargeted and targeted attacks, where the goal is to change the top-K predictions of the target classifier. We introduce novel gradient-based methods to find a good initial boundary point to attack. Our iterative method employs novel gradient estimation techniques, particularly effective in top-K setting, on the decision boundary to effectively exploit the geometry of the decision boundary. Additionally, GSBAK can be used to attack against classifiers with top-K multi-label learning. Extensive experimental results on ImageNet and PASCAL VOC datasets validate the effectiveness of GSBAK in crafting top-K adversarial examples.more » « less
An official website of the United States government

