skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Hyperspectral and Multispectral Image Fusion Using a Multi-Level Propagation Learning Network
Data fusion techniques have gained special interest in remote sensing due to the available capabilities to obtain measurements from the same scene using different instruments with varied resolution domains. In particular, multispectral (MS) and hyperspectral (HS) imaging fusion is used to generate high spatial and spectral images (HSEI). Deep learning data fusion models based on Long Short Term Memory (LSTM) and Convolutional Neural Networks (CNN) have been developed to achieve such task.In this work, we present a Multi-Level Propagation Learning Network (MLPLN) based on a LSTM model but that can be trained with variable data sizes in order achieve the fusion process. Moreover, the MLPLN provides an intrinsic data augmentation feature that reduces the required number of training samples. The proposed model generates a HSEI by fusing a high-spatial resolution MS image and a low spatial resolution HS image. The performance of the model is studied and compared to existing CNN and LSTM approaches by evaluating the quality of the fused image using the structural similarity metric (SSIM). The results show that an increase in the SSIM is still obtained while reducing of the number of training samples to train the MLPLN model.  more » « less
Award ID(s):
1750970
PAR ID:
10324032
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
2021 11th Workshop on Hyperspectral Imaging and Signal Processing: Evolution in Remote Sensing (WHISPERS)
Page Range / eLocation ID:
1 to 5
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Messinger, David W.; Velez-Reyes, Miguel (Ed.)
    Recently, multispectral and hyperspectral data fusion models based on deep learning have been proposed to generate images with a high spatial and spectral resolution. The general objective is to obtain images that improve spatial resolution while preserving high spectral content. In this work, two deep learning data fusion techniques are characterized in terms of classification accuracy. These methods fuse a high spatial resolution multispectral image with a lower spatial resolution hyperspectral image to generate a high spatial-spectral hyperspectral image. The first model is based on a multi-scale long short-term memory (LSTM) network. The LSTM approach performs the fusion using a multiple step process that transitions from low to high spatial resolution using an intermediate step capable of reducing spatial information loss while preserving spectral content. The second fusion model is based on a convolutional neural network (CNN) data fusion approach. We present fused images using four multi-source datasets with different spatial and spectral resolutions. Both models provide fused images with increased spatial resolution from 8m to 1m. The obtained fused images using the two models are evaluated in terms of classification accuracy on several classifiers: Minimum Distance, Support Vector Machines, Class-Dependent Sparse Representation and CNN classification. The classification results show better performance in both overall and average accuracy for the images generated with the multi-scale LSTM fusion over the CNN fusion 
    more » « less
  2. Combining a hyperspectral (HS) image and a multi-spectral (MS) image---an example of image fusion---can result in a spatially and spectrally high-resolution image. Despite the plethora of fusion algorithms in remote sensing, a necessary prerequisite, namely registration, is mostly ignored. This limits their application to well-registered images from the same source. In this article, we propose and validate an integrated registration and fusion approach (code available at https://github.com/zhouyuanzxcv/Hyperspectral). The registration algorithm minimizes a least-squares (LSQ) objective function with the point spread function (PSF) incorporated together with a nonrigid freeform transformation applied to the HS image and a rigid transformation applied to the MS image. It can handle images with significant scale differences and spatial distortion. The fusion algorithm takes the full high-resolution HS image as an unknown in the objective function. Assuming that the pixels lie on a low-dimensional manifold invariant to local linear transformations from spectral degradation, the fusion optimization problem leads to a closed-form solution. The method was validated on the Pavia University, Salton Sea, and the Mississippi Gulfport datasets. When the proposed registration algorithm is compared to its rigid variant and two mutual information-based methods, it has the best accuracy for both the nonrigid simulated dataset and the real dataset, with an average error less than 0.15 pixels for nonrigid distortion of maximum 1 HS pixel. When the fusion algorithm is compared with current state-of-the-art algorithms, it has the best performance on images with registration errors as well as on simulations that do not consider registration effects. 
    more » « less
  3. Retrogressive thaw slumps (RTS) are considered one of the most dynamic permafrost disturbance features in the Arctic. Sub-meter resolution multispectral imagery acquired by very high spatial resolution (VHSR) commercial satellite sensors offer unique capacities in capturing the morphological dynamics of RTSs. The central goal of this study is to develop a deep learning convolutional neural net (CNN) model (a UNet-based workflow) to automatically detect and characterize RTSs from VHSR imagery. We aimed to understand: (1) the optimal combination of input image tile size (array size) and the CNN network input size (resizing factor/spatial resolution) and (2) the interoperability of the trained UNet models across heterogeneous study sites based on a limited set of training samples. Hand annotation of RTS samples, CNN model training and testing, and interoperability analyses were based on two study areas from high-Arctic Canada: (1) Banks Island and (2) Axel Heiberg Island and Ellesmere Island. Our experimental results revealed the potential impact of image tile size and the resizing factor on the detection accuracies of the UNet model. The results from the model transferability analysis elucidate the effects on the UNet model due the variability (e.g., shape, color, and texture) associated with the RTS training samples. Overall, study findings highlight several key factors that we should consider when operationalizing CNN-based RTS mapping over large geographical extents. 
    more » « less
  4. Spatial resolution is critical for observing and monitoring environmental phenomena. Acquiring high-resolution bathymetry data directly from satellites is not always feasible due to limitations on equipment, so spatial data scientists and researchers turn to single image super-resolution (SISR) methods that utilize deep learning techniques as an alternative method to increase pixel density. While super resolution residual networks (e.g., SR-ResNet) are promising for this purpose, several challenges still need to be addressed: (1) Earth data such as bathymetry is expensive to obtain and relatively limited in its data record amount; (2) certain domain knowledge needs to be complied with during model training; (3) certain areas of interest require more accurate measurements than other areas. To address these challenges, following the transfer learning principle, we study how to leverage an existing pre-trained super-resolution deep learning model, namely SR-ResNet, for high-resolution bathymetry data generation. We further enhance the SR-ResNet model to add corresponding loss functions based on domain knowledge. To let the model perform better for certain spatial areas, we add additional loss functions to increase the penalty of the areas of interest. Our experiments show our approaches achieve higher accuracy than most baseline models when evaluating using metrics including MSE, PSNR, and SSIM. 
    more » « less
  5. Ultrasound computed tomography (USCT) is one of the advanced imaging techniques used in structural health monitoring (SHM) and medical imaging due to its relatively low-cost, rapid data acquisition process. The time-domain full waveform inversion (TDFWI) method, an iterative inversion approach, has shown great promise in USCT. However, such an iterative process can be very time-consuming and computationally expensive but can be greatly accelerated by integrating an AI-based approach (e.g., convolution neural network (CNN)). Once trained, the CNN model takes low-iteration TDFWI images as input and instantaneously predicts material property distribution within the scanned region. Nevertheless, the quality of the reconstruction with the current CNN degrades with the increased complexity of material distributions. Another challenge is the availability of enough experimental data and, in some cases, even synthetic surrogate data. To alleviate these issues, this paper details a systematic study of the enhancement effect of a 2D CNN (U-Net) by improving the quality with limited training data. To achieve this, different augmentation schemes (flipping and mixing existing data) were implemented to increase the amount and complexity of the training datasets without generating a substantial number of samples. The objective was to evaluate the enhancement effect of these augmentation techniques on the performance of the U-Net model at FWI iterations. A thousand numerically built samples with acoustic material properties are used to construct multiple datasets from different FWI iterations. A parallelized, high-performance computing (HPC) based framework has been created to rapidly generate the training data. The prediction results were compared against the ground truth images using standard matrices, such as the structural similarity index measure (SSIM) and average mean square error (MSE). The results show that the increased number of samples from augmentations improves shape imaging of the complex regions even with a low iteration FWI training data. 
    more » « less