skip to main content

Title: A Mononuclear Non-heme Iron(III)–Peroxo Complex with an Unprecedented High O–O Stretch and Electrophilic Reactivity
Authors:
; ; ; ; ; ; ; ; ; ; ;
Award ID(s):
1654060
Publication Date:
NSF-PAR ID:
10324050
Journal Name:
Journal of the American Chemical Society
Volume:
143
Issue:
38
Page Range or eLocation-ID:
15556 to 15561
ISSN:
0002-7863
Sponsoring Org:
National Science Foundation
More Like this
  1. Despite the interest in sulfur monoxide (SO) among astrochemists, spectroscopists, inorganic chemists, and organic chemists, its interaction with water remains largely unexplored. We report the first high level theoretical geometries for the two minimum energy complexes formed by sulfur monoxide and water, and we report energies using basis sets as large as aug-cc-pV(Q+d)Z and correlation effects through perturbative quadruple excitations. One structure of SO⋯H 2 O is hydrogen bonded and the other chalcogen bonded. The hydrogen bonded complex has an electronic energy of −2.71 kcal mol −1 and a zero kelvin enthalpy of −1.67 kcal mol −1 , while the chalcogen bonded complex has an electronic energy of −2.64 kcal mol −1 and a zero kelvin enthalpy of −2.00 kcal mol −1 . We also report the transition state between the two structures, which lies below the SO⋯H 2 O dissociation limit, with an electronic energy of −1.26 kcal mol −1 and an enthalpy of −0.81 kcal mol −1 . These features are much sharper than for the isovalent complex of O 2 and H 2 O, which only possesses one weakly bound minimum, so we further analyze the structures with open-shell SAPT0. We find that the interactions between Omore »2 and H 2 O are uniformly weak, but the SO⋯H 2 O complex surface is governed by the superior polarity and polarizability of SO, as well as the diffuse electron density provided by sulfur's extra valence shell.« less
  2. The crystal structures of three bridged bimetallic molecular compounds, namely, triaqua-2κ 3 O -μ-fluorido-pentafluorido-1κ 5 F -(1,10-phenanthroline-2κ 2 N , N ′)copper(II)titanium(IV) monohydrate, [Cu(TiF 6 )(phen)(H 2 O) 3 ]·H 2 O (phen is 1,10-phenanthroline, C 12 H 8 N 2 ), (I), triaqua-2κ 3 O -μ-fluorido-pentafluorido-1κ 5 F -(1,10-phenanthroline-2κ 2 N , N ′)copper(II)zirconium(IV) monohydrate, [Cu(ZrF 6 )(phen)(H 2 O) 3 ]·H 2 O, (II), and triaqua-2κ 3 O -μ-fluorido-pentafluorido-1κ 5 F -(1,10-phenanthroline-2κ 2 N , N ′)copper(II)hafnium(IV) monohydrate, [Cu(HfF 6 )(phen)(H 2 O) 3 ]·H 2 O, (III), and one molecular salt, bis[diaquafluorido(1,10-phenanthroline-κ 2 N , N ′)copper(II)] hexafluoridohafnate(IV) dihydrate, [CuF(phen)(H 2 O) 2 ] 2 [HfF 6 ]·2H 2 O, (IV), are reported. The bridged bimetallic compounds adopt Λ-shaped configurations, with the octahedrally coordinated copper(II) center linked to the fluorinated early transition metal via a fluoride linkage. The extended structures of these Λ-shaped compounds are organized through both intra- and intermolecular hydrogen bonds and intermolecular π–π stacking. The salt compound [Cu(phen)(H 2 O) 2 F] 2 [HfF 6 ]·H 2 O displays an isolated square-pyramidal Cu(phen)(H 2 O) 2 F + complex linked to other cationic complexes and isolated HfF 6 2− anions through intermolecular hydrogen-bonding interactions.