skip to main content

This content will become publicly available on February 1, 2023

Title: ALSO-X and ALSO-X+: Better Convex Approximations for Chance Constrained Programs
In a chance constrained program (CCP), decision makers seek the best decision whose probability of violating the uncertainty constraints is within the prespecified risk level. As a CCP is often nonconvex and is difficult to solve to optimality, much effort has been devoted to developing convex inner approximations for a CCP, among which the conditional value-at-risk (CVaR) has been known to be the best for more than a decade. This paper studies and generalizes the ALSO-X, originally proposed by Ahmed, Luedtke, SOng, and Xie in 2017 , for solving a CCP. We first show that the ALSO-X resembles a bilevel optimization, where the upper-level problem is to find the best objective function value and enforce the feasibility of a CCP for a given decision from the lower-level problem, and the lower-level problem is to minimize the expectation of constraint violations subject to the upper bound of the objective function value provided by the upper-level problem. This interpretation motivates us to prove that when uncertain constraints are convex in the decision variables, ALSO-X always outperforms the CVaR approximation. We further show (i) sufficient conditions under which ALSO-X can recover an optimal solution to a CCP; (ii) an equivalent bilinear programming formulation more » of a CCP, inspiring us to enhance ALSO-X with a convergent alternating minimization method (ALSO-X+); and (iii) an extension of ALSO-X and ALSO-X+ to distributionally robust chance constrained programs (DRCCPs) under the ∞−Wasserstein ambiguity set. Our numerical study demonstrates the effectiveness of the proposed methods. « less
Authors:
;
Award ID(s):
2046426
Publication Date:
NSF-PAR ID:
10324120
Journal Name:
Operations Research
ISSN:
0030-364X
Sponsoring Org:
National Science Foundation
More Like this
  1. We study the chance-constrained bin packing problem, with an application to hospital operating room planning. The bin packing problem allocates items of random sizes that follow a discrete distribution to a set of bins with limited capacity, while minimizing the total cost. The bin capacity constraints are satisfied with a given probability. We investigate a big-M and a 0-1 bilinear formulation of this problem. We analyze the bilinear structure of the formulation and use the lifting techniques to identify cover, clique, and projection inequalities to strengthen the formulation. We show that in certain cases these inequalities are facet-defining for a bilinear knapsack constraint that arises in the reformulation. An extensive computational study is conducted for the operating room planning problem that minimizes the number of open operating rooms. The computational tests are performed using problems generated based on real data from a hospital. A lower-bound improvement heuristic is combined with the cuts proposed in this paper in a branch-and-cut framework. The computations illustrate that the techniques developed in this paper can significantly improve the performance of the branch-and-cut method. Problems with up to 1,000 scenarios are solved to optimality in less than an hour. A safe approximation based on conditionalmore »value at risk (CVaR) is also solved. The computations show that the CVaR approximation typically leaves a gap of one operating room (e.g., six instead of five) to satisfy the chance constraint. Summary of Contribution: This paper investigates a branch-and-cut algorithm for a chance-constrained bin packing problem with multiple bins. The chance-constrained bin packing provides a modeling framework for applied operations research problems, such as health care, scheduling, and so on. This paper studies alternative computational approaches to solve this problem. Moreover, this paper uses real data from a hospital operating room planning setting as an application to test the algorithmic ideas. This work, therefore, is at the intersection of computing and operations research. Several interesting ideas are developed and studied. These include a strengthened big-M reformulation, analysis of a bilinear reformulation, and identifying certain facet-defining inequalities for this formulation. This paper also gives a lower-bound generation heuristic for a model that minimizes the number of bins. Computational experiments for an operating room planning model that uses data from a hospital demonstrate the computational improvement and importance of the proposed approaches. The techniques proposed in this paper and computational experiments further enhance the interface of computing and operations research.« less
  2. We develop a sparse image reconstruction method for Poisson-distributed polychromatic X-ray computed tomography (CT) measurements under the blind scenario where the material of the inspected object and the incident energy spectrum are unknown. We employ our mass-attenuation spectrum parameterization of the noiseless measurements for single-material objects and express the mass-attenuation spectrum as a linear combination of B-spline basis functions of order one. A block coordinate-descent algorithm is developed for constrained minimization of a penalized Poisson negative log-likelihood (NLL) cost function, where constraints and penalty terms ensure nonnegativity of the spline coefficients and nonnegativity and sparsity of the density-map image; the image sparsity is imposed using a convex total-variation (TV) norm penalty term. This algorithm alternates between a Nesterov’s proximal-gradient (NPG) step for estimating the density-map image and a limited-memory Broyden-Fletcher-Goldfarb-Shanno with box constraints (L-BFGS-B) step for estimating the incident-spectrum parameters. We establish conditions for biconvexity of the penalized NLL objective function, which, if satisfied, ensures monotonicity of the NPG-BFGS iteration. We also show that the penalized NLL objective satisfies the Kurdyka-Łojasiewicz property, which is important for establishing local convergence of block-coordinate descent schemes in biconvex optimization problems. Simulation examples demonstrate the performance of the proposed scheme.
  3. We develop a framework for reconstructing images that are sparse in an appropriate transform domain from polychromatic computed tomography (CT) measurements under the blind scenario where the material of the inspected object and incident-energy spectrum are unknown. Assuming that the object that we wish to reconstruct consists of a single material, we obtain a parsimonious measurement-model parameterization by changing the integral variable from photon energy to mass attenuation, which allows us to combine the variations brought by the unknown incident spectrum and mass attenuation into a single unknown mass-attenuation spectrum function; the resulting measurement equation has the Laplace-integral form. The mass-attenuation spectrum is then expanded into basis functions using B splines of order one. We consider a Poisson noise model and establish conditions for biconvexity of the corresponding negative log-likelihood (NLL) function with respect to the density-map and mass-attenuation spectrum parameters. We derive a block-coordinate descent algorithm for constrained minimization of a penalized NLL objective function, where penalty terms ensure nonnegativity of the mass-attenuation spline coefficients and nonnegativity and gradient-map sparsity of the density-map image, imposed using a convex total-variation (TV) norm; the resulting objective function is biconvex. This algorithm alternates between a Nesterov’s proximal-gradient (NPG) step and a limited-memorymore »Broyden-Fletcher-Goldfarb-Shanno with box constraints (L-BFGS-B) iteration for updating the image and mass-attenuation spectrum parameters, respectively. We prove the Kurdyka-Łojasiewicz property of the objective function, which is important for establishing local convergence of block-coordinate descent schemes in biconvex optimization problems. Our framework applies to other NLLs and signal-sparsity penalties, such as lognormal NLL and ℓ₁ norm of 2D discrete wavelet transform (DWT) image coefficients. Numerical experiments with simulated and real X-ray CT data demonstrate the performance of the proposed scheme.« less
  4. d. Many of the infrastructure sectors that are considered to be crucial by the Department of Homeland Security include networked systems (physical and temporal) that function to move some commodity like electricity, people, or even communication from one location of importance to another. The costs associated with these flows make up the price of the network’s normal functionality. These networks have limited capacities, which cause the marginal cost of a unit of flow across an edge to increase as congestion builds. In order to limit the expense of a network’s normal demand we aim to increase the resilience of the system and specifically the resilience of the arc capacities. Divisions of critical infrastructure have faced difficulties in recent years as inadequate resources have been available for needed upgrades and repairs. Without being able to determine future factors that cause damage both minor and extreme to the networks, officials must decide how to best allocate the limited funds now so that these essential systems can withstand the heavy weight of society’s reliance. We model these resource allocation decisions using a two-stage stochastic program (SP) for the purpose of network protection. Starting with a general form for a basic two-stage SP, wemore »enforce assumptions that specify characteristics key to this type of decision model. The second stage objective—which represents the price of the network’s routine functionality—is nonlinear, as it reflects the increasing marginal cost per unit of additional flow across an arc. After the model has been designed properly to reflect the network protection problem, we are left with a nonconvex, nonlinear, nonseparable risk-neutral program. This research focuses on key reformulation techniques that transform the problematic model into one that is convex, separable, and much more solvable. Our approach focuses on using perspective functions to convexify the feasibility set of the second stage and second order conic constraints to represent nonlinear constraints in a form that better allows the use of computational solvers. Once these methods have been applied to the risk-neutral model we introduce a risk measure into the first stage that allows us to control the balance between an efficient, solvable model and the need to hedge against extreme events. Using Benders cuts that exploit linear separability, we give a decomposition and solution algorithm for the general network model. The innovations included in this formulation are then implemented on a transportation network with given flow demand« less
  5. This work proposes a new algorithm – the Single-timescale Double-momentum Stochastic Approximation (SUSTAIN) –for tackling stochastic unconstrained bilevel optimization problems. We focus on bilevel problems where the lower level subproblem is strongly-convex and the upper level objective function is smooth. Unlike prior works which rely on two-timescale or double loop techniques, we design a stochastic momentum-assisted gradient estimator for both the upper and lower level updates. The latter allows us to control the error in the stochastic gradient updates due to inaccurate solution to both subproblems. If the upper objective function is smooth but possibly non-convex, we show that SUSTAIN requires ${O}(\epsilon^{-3/2})$ iterations (each using $O(1)$ samples) to find an $\epsilon$-stationary solution. The $\epsilon$-stationary solution is defined as the point whose squared norm of the gradient of the outer function is less than or equal to $\epsilon$. The total number of stochastic gradient samples required for the upper and lower level objective functions match the best-known complexity for single-level stochastic gradient algorithms. We also analyze the case when the upper level objective function is strongly-convex.