skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: ALSO-X and ALSO-X+: Better Convex Approximations for Chance Constrained Programs
In a chance constrained program (CCP), decision makers seek the best decision whose probability of violating the uncertainty constraints is within the prespecified risk level. As a CCP is often nonconvex and is difficult to solve to optimality, much effort has been devoted to developing convex inner approximations for a CCP, among which the conditional value-at-risk (CVaR) has been known to be the best for more than a decade. This paper studies and generalizes the ALSO-X, originally proposed by Ahmed, Luedtke, SOng, and Xie in 2017 , for solving a CCP. We first show that the ALSO-X resembles a bilevel optimization, where the upper-level problem is to find the best objective function value and enforce the feasibility of a CCP for a given decision from the lower-level problem, and the lower-level problem is to minimize the expectation of constraint violations subject to the upper bound of the objective function value provided by the upper-level problem. This interpretation motivates us to prove that when uncertain constraints are convex in the decision variables, ALSO-X always outperforms the CVaR approximation. We further show (i) sufficient conditions under which ALSO-X can recover an optimal solution to a CCP; (ii) an equivalent bilinear programming formulation of a CCP, inspiring us to enhance ALSO-X with a convergent alternating minimization method (ALSO-X+); and (iii) an extension of ALSO-X and ALSO-X+ to distributionally robust chance constrained programs (DRCCPs) under the ∞−Wasserstein ambiguity set. Our numerical study demonstrates the effectiveness of the proposed methods.  more » « less
Award ID(s):
2046426 2246414
PAR ID:
10324120
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Operations Research
ISSN:
0030-364X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Ruiz, Francisco; Dy, Jennifer; van de Meent, Jan-Willem (Ed.)
    In this paper, we study a class of bilevel optimization problems, also known as simple bilevel optimization, where we minimize a smooth objective function over the optimal solution set of another convex constrained optimization problem. Several iterative methods have been developed for tackling this class of problems. Alas, their convergence guarantees are either asymptotic for the upper-level objective, or the convergence rates are slow and sub-optimal. To address this issue, in this paper, we introduce a novel bilevel optimization method that locally approximates the solution set of the lower-level problem via a cutting plane and then runs a conditional gradient update to decrease the upper-level objective. When the upper-level objective is convex, we show that our method requires $${O}(\max\{1/\epsilon_f,1/\epsilon_g\})$$ iterations to find a solution that is $$\epsilon_f$$-optimal for the upper-level objective and $$\epsilon_g$$-optimal for the lower-level objective. Moreover, when the upper-level objective is non-convex, our method requires $${O}(\max\{1/\epsilon_f^2,1/(\epsilon_f\epsilon_g)\})$$ iterations to find an $$(\epsilon_f,\epsilon_g)$$-optimal solution. We also prove stronger convergence guarantees under the Holderian error bound assumption on the lower-level problem. To the best of our knowledge, our method achieves the best-known iteration complexity for the considered class of bilevel problems. 
    more » « less
  2. In this paper, we propose a convex optimization approach to chance-constrained drift counteraction optimal control (DCOC) problems for linear systems with additive stochastic disturbances. Chance-constrained DCOC aims to compute an optimal control law to maximize the time duration before the probability of violating a prescribed set of constraints can no longer be maintained to be below a specified risk level. While conventional approaches to this problem involve solving a mixed-integer programming problem, we show that an optimal solution to the problem can also be found by solving a convex second-order cone programming problem without integer variables. We illustrate the application of chance-constrained DCOC to an automotive adaptive cruise control example. 
    more » « less
  3. We study the chance-constrained bin packing problem, with an application to hospital operating room planning. The bin packing problem allocates items of random sizes that follow a discrete distribution to a set of bins with limited capacity, while minimizing the total cost. The bin capacity constraints are satisfied with a given probability. We investigate a big-M and a 0-1 bilinear formulation of this problem. We analyze the bilinear structure of the formulation and use the lifting techniques to identify cover, clique, and projection inequalities to strengthen the formulation. We show that in certain cases these inequalities are facet-defining for a bilinear knapsack constraint that arises in the reformulation. An extensive computational study is conducted for the operating room planning problem that minimizes the number of open operating rooms. The computational tests are performed using problems generated based on real data from a hospital. A lower-bound improvement heuristic is combined with the cuts proposed in this paper in a branch-and-cut framework. The computations illustrate that the techniques developed in this paper can significantly improve the performance of the branch-and-cut method. Problems with up to 1,000 scenarios are solved to optimality in less than an hour. A safe approximation based on conditional value at risk (CVaR) is also solved. The computations show that the CVaR approximation typically leaves a gap of one operating room (e.g., six instead of five) to satisfy the chance constraint. Summary of Contribution: This paper investigates a branch-and-cut algorithm for a chance-constrained bin packing problem with multiple bins. The chance-constrained bin packing provides a modeling framework for applied operations research problems, such as health care, scheduling, and so on. This paper studies alternative computational approaches to solve this problem. Moreover, this paper uses real data from a hospital operating room planning setting as an application to test the algorithmic ideas. This work, therefore, is at the intersection of computing and operations research. Several interesting ideas are developed and studied. These include a strengthened big-M reformulation, analysis of a bilinear reformulation, and identifying certain facet-defining inequalities for this formulation. This paper also gives a lower-bound generation heuristic for a model that minimizes the number of bins. Computational experiments for an operating room planning model that uses data from a hospital demonstrate the computational improvement and importance of the proposed approaches. The techniques proposed in this paper and computational experiments further enhance the interface of computing and operations research. 
    more » « less
  4. This work proposes a new algorithm – the Single-timescale Double-momentum Stochastic Approximation (SUSTAIN) –for tackling stochastic unconstrained bilevel optimization problems. We focus on bilevel problems where the lower level subproblem is strongly-convex and the upper level objective function is smooth. Unlike prior works which rely on two-timescale or double loop techniques, we design a stochastic momentum-assisted gradient estimator for both the upper and lower level updates. The latter allows us to control the error in the stochastic gradient updates due to inaccurate solution to both subproblems. If the upper objective function is smooth but possibly non-convex, we show that SUSTAIN requires $${O}(\epsilon^{-3/2})$$ iterations (each using $O(1)$ samples) to find an $$\epsilon$$-stationary solution. The $$\epsilon$$-stationary solution is defined as the point whose squared norm of the gradient of the outer function is less than or equal to $$\epsilon$$. The total number of stochastic gradient samples required for the upper and lower level objective functions match the best-known complexity for single-level stochastic gradient algorithms. We also analyze the case when the upper level objective function is strongly-convex. 
    more » « less
  5. Distributionally robust optimization (DRO) is a powerful framework for training robust models against data distribution shifts. This paper focuses on constrained DRO, which has an explicit characterization of the robustness level. Existing studies on constrained DRO mostly focus on convex loss function, and exclude the practical and challenging case with non-convex loss function, e.g., neural network. This paper develops a stochastic algorithm and its performance analysis for non-convex constrained DRO. The computational complexity of our stochastic algorithm at each iteration is independent of the overall dataset size, and thus is suitable for large-scale applications. We focus on the general Cressie-Read family divergence defined uncertainty set which includes chi^2-divergences as a special case. We prove that our algorithm finds an epsilon-stationary point with an improved computational complexity than existing methods. Our method also applies to the smoothed conditional value at risk (CVaR) DRO. 
    more » « less