skip to main content

This content will become publicly available on December 1, 2022

Title: Probing Early Supermassive Black Hole Growth and Quasar Evolution with Near-infrared Spectroscopy of 37 Reionization-era Quasars at 6.3 < z ≤ 7.64
Abstract We report the results of near-infrared spectroscopic observations of 37 quasars in the redshift range 6.3 < z ≤ 7.64, including 32 quasars at z > 6.5, forming the largest quasar near-infrared spectral sample at this redshift. The spectra, taken with Keck, Gemini, VLT, and Magellan, allow investigations of central black hole mass and quasar rest-frame ultraviolet spectral properties. The black hole masses derived from the Mg ii emission lines are in the range (0.3–3.6) × 10 9 M ⊙ , which requires massive seed black holes with masses ≳10 3 –10 4 M ⊙ , assuming Eddington accretion since z = 30. The Eddington ratio distribution peaks at λ Edd ∼ 0.8 and has a mean of 1.08, suggesting high accretion rates for these quasars. The C iv –Mg ii emission-line velocity differences in our sample show an increase of C iv blueshift toward higher redshift, but the evolutionary trend observed from this sample is weaker than the previous results from smaller samples at similar redshift. The Fe ii /Mg ii flux ratios derived for these quasars up to z = 7.6, compared with previous measurements at different redshifts, do not show any evidence of strong redshift evolution, more » suggesting metal-enriched environments in these quasars. Using this quasar sample, we create a quasar composite spectrum for z > 6.5 quasars and find no significant redshift evolution of quasar broad emission lines and continuum slope, except for a blueshift of the C iv line. Our sample yields a strong broad absorption line quasar fraction of ∼24%, higher than the fractions in lower-redshift quasar samples, although this could be affected by small sample statistics and selection effects. « less
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; « less
Award ID(s):
Publication Date:
Journal Name:
The Astrophysical Journal
Page Range or eLocation-ID:
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT The elemental abundances in the broad-line regions of high-redshift quasars trace the chemical evolution in the nuclear regions of massive galaxies in the early Universe. In this work, we study metallicity-sensitive broad emission-line flux ratios in rest-frame UV spectra of 25 high-redshift (5.8 < z < 7.5) quasars observed with the VLT/X-shooter and Gemini/GNIRS instruments, ranging over $\log \left({{M}_{\rm {BH}}/\rm {M}_{\odot }}\right) = 8.4-9.8$ in black hole mass and $\log \left(\rm {L}_{\rm {bol}}/\rm {erg \, s}^{-1}\right) = 46.7-47.7$ in bolometric luminosity. We fit individual spectra and composites generated by binning across quasar properties: bolometric luminosity, black hole mass, and blueshift of the C iv line, finding no redshift evolution in the emission-line ratios by comparing our high-redshift quasars to lower redshift (2.0 < z < 5.0) results presented in the literature. Using cloudy-based locally optimally emitting cloud photoionization model relations between metallicity and emission-line flux ratios, we find the observable properties of the broad emission lines to be consistent with emission from gas clouds with metallicity that are at least 2–4 times solar. Our high-redshift measurements also confirm that the blueshift of the C iv emission line is correlated with its equivalent width, which influences line ratios normalized against C iv. When accountingmore »for the C iv blueshift, we find that the rest-frame UV emission-line flux ratios do not correlate appreciably with the black hole mass or bolometric luminosity.« less
  2. null (Ed.)
    ABSTRACT Outflows from supermassive black holes (SMBHs) play an important role in the co-evolution of themselves, their host galaxies, and the larger scale environments. Such outflows are often characterized by emission and absorption lines in various bands and in a wide velocity range blueshifted from the systematic redshift of the host quasar. In this paper, we report a strong broad line region (BLR) outflow from the z ≈ 4.7 quasar BR 1202-0725 based on the high-resolution optical spectrum taken with the Magellan Inamori Kyocera Echelle (MIKE) spectrograph installed on the 6.5 m Magellan/Clay telescope, obtained from the ‘Probing the He ii re-Ionization ERa via Absorbing C iv Historical Yield’ (HIERACHY) project. This rest-frame ultraviolet (UV) spectrum is characterized by a few significantly blueshifted broad emission lines from high ions; the most significant one is the C iv line at a velocity of $\sim -6500$ km s−1 relative to the H α emission line, which is among the highest velocity BLR outflows in observed quasars at z > 4. The measured properties of UV emission lines from different ions, except for O i and Ly α, also follow a clear trend that higher ions tend to be broader and outflow at higher average velocities. There are multiple C iv and Si iv absorbing components identifiedmore »on the blue wings of the corresponding emission lines, which may be produced by either the outflow or the intervening absorbers.« less
  3. Abstract Quasar black hole masses are most commonly estimated using broad emission lines in single epoch spectra based on scaling relationships determined from reverberation mapping of small samples of low-redshift objects. Several effects have been identified requiring modifications to these scaling relationships, resulting in significant reductions of the black hole mass determinations at high redshift. Correcting these systematic biases is critical to understanding the relationships among black hole and host galaxy properties. We are completing a program using the Gemini North telescope, called the Gemini North Infrared Spectrograph (GNIRS) Distant Quasar Survey (DQS), that has produced rest-frame optical spectra of about 200 high-redshift quasars (z = 1.5–3.5). The GNIRS-DQS will produce new and improved ultraviolet-based black hole mass and accretion rate prescriptions, as well as new redshift prescriptions for velocity zero points of high-z quasars, necessary to measure feedback.
  4. Abstract Broad-line regions (BLRs) in high-redshift quasars provide crucial information on chemical enrichment in the early universe. Here we present a study of BLR metallicities in 33 quasars at redshift 5.7 < z < 6.4. Using the near-IR spectra of the quasars obtained from the Gemini telescope, we measure their rest-frame UV emission-line flux and calculate flux ratios. We then estimate BLR metallicities with empirical calibrations based on photoionization models. The inferred median metallicity of our sample is a few times the solar value, indicating that the BLR gas had been highly metal enriched at z ∼ 6. We compare our sample with a low-redshift quasar sample with similar luminosities and find no evidence of redshift evolution in quasar BLR metallicities. This is consistent with previous studies. The Fe ii /Mg ii flux ratio, a proxy for the Fe/ α element abundance ratio, shows no redshift evolution as well, further supporting rapid nuclear star formation at z ∼ 6. We also find that the black hole mass–BLR metallicity relation at z ∼ 6 is consistent with the relation measured at 2 < z < 5, suggesting that our results are not biased by a selection effect due to this relation.
  5. ABSTRACT We report on three redshift z > 2 quasars with dramatic changes in their C iv emission lines, the first sample of changing-look quasars (CLQs) at high redshift. This is also the first time the changing-look behaviour has been seen in a high-ionization emission line. SDSS J1205+3422, J1638+2827, and J2228 + 2201 show interesting behaviour in their observed optical light curves, and subsequent spectroscopy shows significant changes in the C iv broad emission line, with both line collapse and emergence being displayed on rest-frame time-scales of ∼240–1640 d. These are rapid changes, especially when considering virial black hole mass estimates of MBH > 109M⊙ for all three quasars. Continuum and emission line measurements from the three quasars show changes in the continuum-equivalent width plane with the CLQs seen to be on the edge of the full population distribution, and showing indications of an intrinsic Baldwin effect. We put these observations in context with recent state-change models, and note that even in their observed low-state, the C iv CLQs are generally above ∼5 per cent in Eddington luminosity.