skip to main content


This content will become publicly available on June 29, 2024

Title: A SPectroscopic Survey of Biased Halos in the Reionization Era (ASPIRE): A First Look at the Rest-frame Optical Spectra of z > 6.5 Quasars Using JWST
Abstract Studies of rest-frame optical emission in quasars at z > 6 have historically been limited by the wavelengths accessible by ground-based telescopes. The James Webb Space Telescope (JWST) now offers the opportunity to probe this emission deep into the reionization epoch. We report the observations of eight quasars at z > 6.5 using the JWST/NIRCam Wide Field Slitless Spectroscopy as a part of the “A SPectroscopic survey of biased halos In the Reionization Era (ASPIRE)” program. Our JWST spectra cover the quasars’ emission between rest frame ∼4100 and 5100 Å. The profiles of these quasars’ broad H β emission lines span a full width at half maximum from 3000 to 6000 km s −1 . The H β -based virial black hole (BH) masses, ranging from 0.6 to 2.1 billion solar masses, are generally consistent with their Mg ii -based BH masses. The new measurements based on the more reliable H β tracer thus confirm the existence of a billion solar-mass BHs in the reionization epoch. In the observed [O iii ] λ λ 4960,5008 doublets of these luminous quasars, broad components are more common than narrow core components (≤ 1200 km s −1 ), and only one quasar shows stronger narrow components than broad. Two quasars exhibit significantly broad and blueshifted [O iii ] emission, thought to trace galactic-scale outflows, with median velocities of −610 and −1430 km s −1 relative to the [C ii ] 158 μ m line. All eight quasars show strong optical Fe ii emission and follow the eigenvector 1 relations defined by low-redshift quasars. The entire ASPIRE program will eventually cover 25 quasars and provide a statistical sample for the studies of the BHs and quasar spectral properties.  more » « less
Award ID(s):
1909933
NSF-PAR ID:
10450530
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Date Published:
Journal Name:
The Astrophysical Journal Letters
Volume:
951
Issue:
1
ISSN:
2041-8205
Page Range / eLocation ID:
L5
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Luminous quasars are powerful targets to investigate the role of feedback from supermassive black holes (BHs) in regulating the growth phases of BHs themselves and of their host galaxies, up to the highest redshifts. Here we investigate the cosmic evolution of the occurrence and kinematics of BH-driven outflows, as traced by broad absorption line (BAL) features, due to the C iv ionic transition. We exploit a sample of 1935 quasars at z = 2.1–6.6 with bolometric luminosity log( L bol /erg s −1 ) ≳ 46.5, drawn from the Sloan Digital Sky Survey and from the X-Shooter legacy survey of Quasars at the Reionization Epoch (XQR-30). We consider rest-frame optical bright quasars to minimize observational biases due to quasar selection criteria. We apply a homogeneous BAL-identification analysis, based on employing composite template spectra to estimate the quasar intrinsic emission. We find a BAL quasar fraction close to 20% at z ∼ 2–4, while it increases to almost 50% at z ∼ 6. The velocity and width of the BAL features also increase at z ≳ 4.5. We exclude the possibility that the redshift evolution of the BAL properties is due to differences in terms of quasar luminosity and accretion rate. These results suggest significant BH feedback occurring in the 1 Gyr old universe, likely affecting the growth of BHs and, possibly, of their host galaxies, as supported by models of early BH and galaxy evolution. 
    more » « less
  2. Abstract

    We analyze a sample of 25 [Nev] (λ3426) emission-line galaxies at 1.4 <z< 2.3 using Hubble Space Telescope/Wide Field Camera 3 G102 and G141 grism observations from the CANDELS LyαEmission at Reionization (CLEAR) survey. [Nev] emission probes extremely energetic photoionization (creation potential of 97.11 eV) and is often attributed to energetic radiation from active galactic nuclei (AGNs), shocks from supernovae, or an otherwise very hard ionizing spectrum from the stellar continuum. In this work, we use [Nev] in conjunction with other rest-frame UV/optical emission lines ([Oii]λλ3726, 3729, [Neiii]λ3869, Hβ, [Oiii]λλ4959, 5007, Hα+[Nii]λλ6548, 6583, [Sii]λλ6716, 6731), deep (2–7 Ms) X-ray observations (from Chandra), and mid-infrared imaging (from Spitzer) to study the origin of this emission and to place constraints on the nature of the ionizing engine. The majority of the [Nev]-detected galaxies have properties consistent with ionization from AGNs. However, for our [Nev]-selected sample, the X-ray luminosities are consistent with local (z≲ 0.1) X-ray-selected Seyferts, but the [Nev] luminosities are more consistent with those fromz∼ 1 X-ray-selected QSOs. The excess [Nev] emission requires either reduced hard X-rays or a ∼0.1 keV excess. We discuss possible origins of the apparent [Nev] excess, which could be related to the “soft (X-ray) excess” observed in some QSOs and Seyferts and/or be a consequence of a complex/anisotropic geometry for the narrow-line region, combined with absorption from a warm, relativistic wind ejected from the accretion disk. We also consider implications for future studies of extreme high-ionization systems in the epoch of reionization (z≳ 6) with the James Webb Space Telescope.

     
    more » « less
  3. Abstract

    The most reliable single-epoch supermassive black hole mass (MBH) estimates in quasars are obtained by using the velocity widths of low-ionization emission lines, typically the Hβλ4861 line. Unfortunately, this line is redshifted out of the optical band atz≈ 1, leavingMBHestimates to rely on proxy rest-frame ultraviolet (UV) emission lines, such as Civλ1549 or Mgiiλ2800, which contain intrinsic challenges when measuring, resulting in uncertainMBHestimates. In this work, we aim at correctingMBHestimates derived from the Civand Mgiiemission lines based on estimates derived from the Hβemission line. We find that employing the equivalent width of Civin derivingMBHestimates based on Mgiiand Civprovides values that are closest to those obtained from Hβ. We also provide prescriptions to estimateMBHvalues when only Civ, only Mgii, and both Civand Mgiiare measurable. We find that utilizing both emission lines, where available, reduces the scatter of UV-basedMBHestimates by ∼15% when compared to previous studies. Lastly, we discuss the potential of our prescriptions to provide more accurate and precise estimates ofMBHgiven a much larger sample of quasars at 3.20 ≲z≲ 3.50, where both Mgiiand Hβcan be measured in the same near-infrared spectrum.

     
    more » « less
  4. Abstract

    Quasars atz≳ 1 most often have redshifts measured from rest-frame ultraviolet emission lines. One of the most common such lines, Civλ1549, shows blueshifts up to ≈5000 km s−1and in rare cases even higher. This blueshifting results in highly uncertain redshifts when compared to redshift determinations from rest-frame optical emission lines, e.g., from the narrow [Oiii]λ5007 feature. We present spectroscopic measurements for 260 sources at 1.55 ≲z≲ 3.50 having −28.0 ≲Mi≲ − 30.0 mag from the Gemini Near Infrared Spectrograph–Distant Quasar Survey (GNIRS-DQS) catalog, augmenting the previous iteration, which contained 226 of the 260 sources whose measurements are improved upon in this work. We obtain reliable systemic redshifts based on [Oiii]λ5007 for a subset of 121 sources, which we use to calibrate prescriptions for correcting UV-based redshifts. These prescriptions are based on a regression analysis involving Civfull-width-at-half-maximum intensity and equivalent width, along with the UV continuum luminosity at a rest-frame wavelength of 1350 Å. Applying these corrections can improve the accuracy and the precision in the Civ-based redshift by up to ∼850 km s−1and ∼150 km s−1, respectively, which correspond to ∼8.5 and ∼1.5 Mpc in comoving distance atz= 2.5. Our prescriptions also improve the accuracy of the best available multifeature redshift determination algorithm by ∼100 km s−1, indicating that the spectroscopic properties of the Civemission line can provide robust redshift estimates for high-redshift quasars. We discuss the prospects of our prescriptions for cosmological and quasar studies utilizing upcoming large spectroscopic surveys.

     
    more » « less
  5. ABSTRACT The final phase of the reionization process can be probed by rest-frame UV absorption spectra of quasars at z ≳ 6, shedding light on the properties of the diffuse intergalactic medium within the first Gyr of the Universe. The ESO Large Programme ‘XQR-30: the ultimate XSHOOTER legacy survey of quasars at z ≃ 5.8–6.6’ dedicated ∼250 h of observations at the VLT to create a homogeneous and high-quality sample of spectra of 30 luminous quasars at z ∼ 6, covering the rest wavelength range from the Lyman limit to beyond the Mg ii emission. Twelve quasar spectra of similar quality from the XSHOOTER archive were added to form the enlarged XQR-30 sample, corresponding to a total of ∼350 h of on-source exposure time. The median effective resolving power of the 42 spectra is R ≃ 11 400 and 9800 in the VIS and NIR arm, respectively. The signal-to-noise ratio per 10 km s−1 pixel ranges from ∼11 to 114 at λ ≃ 1285 Å rest frame, with a median value of ∼29. We describe the observations, data reduction, and analysis of the spectra, together with some first results based on the E-XQR-30 sample. New photometry in the H and K bands are provided for the XQR-30 quasars, together with composite spectra whose characteristics reflect the large absolute magnitudes of the sample. The composite and the reduced spectra are released to the community through a public repository, and will enable a range of studies addressing outstanding questions regarding the first Gyr of the Universe. 
    more » « less