Abstract The lithospheric structure of the contiguous US and surrounding regions offers clues into the tectonic history, including interactions between subducting slabs and cratons. In this paper, we present a new radially anisotropic shear wave speed model of the upper mantle (70–410 km) of the contiguous US and surrounding regions, constrained by seismic full‐waveform inversion. The new model (named CUSRA2021) utilizes frequency‐dependent travel time measurements, from 160 earthquake events recorded by 5,280 stations. The data coverage in eastern US is improved by incorporating more intraplate earthquakes. The final model exhibits clear and detailed shear wave speed anomalies correlating well with tectonic units such as North America Craton (high‐Vs), Cascadia subduction zones (high‐Vs), Columbia Plateau (low‐Vs), Basin and Range (low‐Vs), etc. In particular, the detailed structure of the North America Craton beneath Illinois basin is revealed. The depth of high‐Vs anomaly beneath the North America Craton correlates well with S‐to‐P receiver function and SH reflection results. Besides, the radial anisotropy in the Craton lithosphere shows a layering structure, which may relate to the process of lithospheric accretion and the origin of mid‐lithosphere discontinuities.
more »
« less
Assessment of seismic tomographic models of the contiguous United States using intermediate-period 3D wavefield simulation
Summary The contiguous United States has been well instrumented with broadband seismic stations due to the development of the EarthScope Transportable Array. Previous studies have provided various 3D seismic wave speed models for the crust and upper mantle with improved resolution. However, discrepancies exist among these models due to differences in both data sets and tomographic methods, which introduce uncertainties on the imaged lithospheic structure beneath North America. A further model refinement using the best data coverage and advanced tomographic methods such as full-waveform inversion (FWI) is expected to provide better seismological constraints. Initial models have significant impacts on the convergence of FWIs. However, how to select an optimal initial model is not well investigated. Here, we present a data-driven initial model selection procedure for the contiguous US and surrounding regions by assessing waveform fitting and misfit functions between the observations and synthetics from candidate models. We use a data set of waveforms from 30 earthquakes recorded by 5,820 stations across North America. The results suggest that the tested 3D models capture well long-period waveforms while showing discrepancies in short-periods especially on tangential components. This observation indicates that the smaller-scale heterogeneities and radial anisotropy in the crust and upper mantle are not well constrained. Based on our test results, a hybrid initial model combining S40RTS or S362ANI in the mantle and US.2016 for Vsv and CRUST1.0 for Vsh in the crust is compatible for future FWIs to refine the lithospheric structure of North America.
more »
« less
- Award ID(s):
- 1942431
- PAR ID:
- 10324340
- Date Published:
- Journal Name:
- Geophysical Journal International
- ISSN:
- 0956-540X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The structure of the Antarctic crust is important to our understanding of processes occurring within the Antarctic cryosphere as well as to the Earth’s response to ice mass loss. With the increase in geophysical studies of Antarctica, crustal structure has become much better defined beneath many regions. Several crustal models have been created from seismic-derived and/or gravity-derived data, and some of these models incorporate sets of crustal receiver functions either as a priori constraints or to validate model results. However, receiver function constraints do not exist throughout large regions of Antarctica due to a lack of seismic coverage; given this, we search for additional metrics by which we can compare and contrast Earth models. One approach that has been utilized for other continents is to forward model accurate synthetic waveforms through existing seismic velocity models to identify which models most accurately reproduce seismic waveform datasets. Such waveform datasets may come from accurately determined seismic events or from ambient seismic noise. In an effort to assess existing Antarctic crustal models using a different metric to identify regions where crustal structure is still most uncertain, we have collected a suite of available seismic- and gravity-derived Antarctic crustal models. In the absence of accurately determined ‘ground-truthed’ seismic events in Antarctica, we use a frequency-time normalization approach to extract Rayleigh waves from ambient seismic noise, with periods of 15-55 seconds that are sensitive to crustal structure. We split the observations into two separate validation datasets. The first dataset includes all station-station cross-correlations, with at least one seismic station in each pair that has not been previously used to constrain prior tomographic inversions (a true validation dataset), and the second dataset includes all available station-station cross-correlations, including those that may have been used to constrain some of the models we are testing. We construct sets of Earth models from the available crustal models underlain by two different upper mantle models. We forward model synthetic waveforms using a finite difference approach through each of the Earth models and measure the phase delays between the synthetic waveforms and the ambient seismic noise dataset. Results from our waveform validation study and identification of the poorly characterized regions of Antarctic crust are forthcoming and will be presented.more » « less
-
SUMMARY EarthScope's USArray seismic component provided unprecedented coverage of the contiguous United States and has therefore spurred significant advances in tomographic imaging and geodynamic modelling. Here, we present a new global, radially anisotropic shear wave velocity tomography model to investigate upper mantle structure and North American Plate dynamics, with a focus on the contiguous United States. The model uses a data-adaptive mesh and traveltimes of both surface waves and body waves to constrain structure in the crust and mantle in order to arrive at a more consistent representation of the subsurface compared to what is provided by existing models. The resulting model is broadly consistent with previous global models at the largest scales, but there are substantial differences under the contiguous United States where we can achieve higher resolution. On these regional scales, the new model contains short wavelength anomalies consistent with regional models derived from USArray data alone. We use the model to explore the geometry of the subducting Farallon Slab, the presence of upper mantle high velocity anomalies, low velocity zones in the central and eastern United States and evaluate models of dynamic topography in the Cordillera. Our models indicate a single, shallowly dipping, discontinuous slab associated with the Farallon Plate, but there are remaining imaging challenges. Inferring dynamic topography from the new model captures both the long-wavelength anomalies common in global models and the short-wavelength anomalies apparent in regional models. Our model thus bridges the gap between high-resolution regional models within the proper uppermost mantle context provided by global models, which is crucial for understanding many of the fundamental questions in continental dynamics.more » « less
-
SUMMARY We present a new 3-D radially anisotropic seismic velocity model EARA2024 of the crust and mantle beneath East Asia and the northwestern Pacific using adjoint full-waveform inversion tomography. We construct the EARA2024 model by iteratively minimizing the waveform similarity misfit between the synthetic and observed waveforms from 142 earthquakes recorded by about 2000 broad-band stations in East Asia. Compared to previous studies, this new model renders significantly improved images of the subducted oceanic plate in the upper mantle, mantle transition zone, and uppermost lower mantle along the Kuril, Japan, Izu-Bonin and Ryukyu Trenches. Complex slab deformation and break-offs are observed at different depths. Moreover, our model provides new insights into the origins of intraplate volcanoes in East Asia, including the Changbaishan, Datong-Fengzhen, Tengchong and Hainan volcanic fields.more » « less
-
null (Ed.)Seismology provides important constraints on the structure and dynamics of the deep mantle. Computational and methodological advances in the past two decades improved tomographic imaging of the mantle and revealed the fine-scale structure of plumes ascending from the core-mantle boundary region and slabs of oceanic lithosphere sinking into the lower mantle. We discuss the modeling aspects of global tomography including theoretical approximations, data selection, and model fidelity and resolution. Using spectral, principal component, and cluster analyses, we highlight the robust patterns of seismic heterogeneity, which inform us of flow in the mantle, the history of plate motions, and potential compositionally distinct reservoirs. In closing, we emphasize that data mining of vast collections of seismic waveforms and new data from distributed acoustic sensing, autonomous hydrophones, ocean-bottom seismometers, and correlation-based techniques will boost the development of the next generation of global models of density, seismic velocity, and attenuation. ▪ Seismic tomography reveals the 100-km to 1,000-km scale variation of seismic velocity heterogeneity in the mantle. ▪ Tomographic images are the most important geophysical constraints on mantle circulation and evolution.more » « less
An official website of the United States government

