skip to main content


Title: CUSRA2021: A Radially Anisotropic Model of the Contiguous US and Surrounding Regions by Full‐Waveform Inversion
Abstract

The lithospheric structure of the contiguous US and surrounding regions offers clues into the tectonic history, including interactions between subducting slabs and cratons. In this paper, we present a new radially anisotropic shear wave speed model of the upper mantle (70–410 km) of the contiguous US and surrounding regions, constrained by seismic full‐waveform inversion. The new model (named CUSRA2021) utilizes frequency‐dependent travel time measurements, from 160 earthquake events recorded by 5,280 stations. The data coverage in eastern US is improved by incorporating more intraplate earthquakes. The final model exhibits clear and detailed shear wave speed anomalies correlating well with tectonic units such as North America Craton (high‐Vs), Cascadia subduction zones (high‐Vs), Columbia Plateau (low‐Vs), Basin and Range (low‐Vs), etc. In particular, the detailed structure of the North America Craton beneath Illinois basin is revealed. The depth of high‐Vs anomaly beneath the North America Craton correlates well with S‐to‐P receiver function and SH reflection results. Besides, the radial anisotropy in the Craton lithosphere shows a layering structure, which may relate to the process of lithospheric accretion and the origin of mid‐lithosphere discontinuities.

 
more » « less
Award ID(s):
1942431
NSF-PAR ID:
10420653
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Solid Earth
Volume:
127
Issue:
8
ISSN:
2169-9313
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Many seismic tomography investigations have imaged the East Antarctic lithosphere as a thick and continuous cratonic structure that is separated from the thinner lithosphere of the adjacent West Antarctic Rift System by the Transantarctic Mountains. However, recent studies have painted a more complicated picture, suggesting, for instance, a separate cratonic fragment beneath Dronning Maud Land and possible lithospheric delamination beneath the southern Transantarctic Mountains. In addition, patterns of intracratonic seismicity have been identified near the Gamburtsev Subglacial Mountains in East Antarctica, indicating possible rift zones in this region. That said, detailed imaging of the subsurface structure has remained challenging given the sparse distribution of seismic stations and the generally low seismicity rate throughout the interior of East Antarctica. Therefore, new approaches that can leverage existing seismic datasets to elucidate the Antarctic cratonic structure are vital. We are utilizing records of ambient seismic noise recorded by numerous temporary, moderate-term, and long-term seismic networks throughout Antarctica to improve the imaging of the lithospheric structure. Empirical Green’s Functions with periods of 40-340 seconds have been extracted using a frequency-time normalization approach, and these data are being used to constrain our full-waveform inversion. A finite-difference approach with a continental-scale, spherical grid is employed to numerically model synthetic seismograms, and a scattering integral method is used to construct the associated sensitivity kernels. Our initial results suggest that some portions of East Antarctica, particularly those beneath the Wilkes Subglacial Basin and the Aurora Basin, may have reduced shear-wave velocities that potentially indicate regions of thinner lithosphere. Further, possible segmentation may be present in the vicinity of the Gamburtsev Subglacial Mountains. Our new tomographic results will allow for further assessment of the East Antarctic tectonic structure and its relation to local seismicity. 
    more » « less
  2. Abstract

    Lithospheric layering contains critical information about continental formation and evolution. However, discrepancies on the depth distributions of lithospheric layers have significantly limited our understanding of possible tectonic connections among the layers. Here, we construct a high‐resolution shear velocity model of eastern North America using full‐wave ambient noise simulation and inversion by integrating onshore and offshore seismic datasets. Our new model reveals large lateral variations of lithosphere thickness approximately across the major tectonic boundaries, strong low‐velocity anomalies underlying the thinner lithosphere, and multiple low‐velocity layers within the continental lithosphere. We suggest that the present mantle lithosphere beneath eastern North America was formed and modified through multiple stages of tectonic processes, among which metasomatism may have significantly contributed to the observed intralithospheric low‐velocity layers. The sharp thickness variation of lithosphere promoted edge‐driven mantle convection, which has been consequently modifying the overlying mantle lithosphere and further sharpening the gradient of lithosphere thickness

     
    more » « less
  3. Summary The contiguous United States has been well instrumented with broadband seismic stations due to the development of the EarthScope Transportable Array. Previous studies have provided various 3D seismic wave speed models for the crust and upper mantle with improved resolution. However, discrepancies exist among these models due to differences in both data sets and tomographic methods, which introduce uncertainties on the imaged lithospheic structure beneath North America. A further model refinement using the best data coverage and advanced tomographic methods such as full-waveform inversion (FWI) is expected to provide better seismological constraints. Initial models have significant impacts on the convergence of FWIs. However, how to select an optimal initial model is not well investigated. Here, we present a data-driven initial model selection procedure for the contiguous US and surrounding regions by assessing waveform fitting and misfit functions between the observations and synthetics from candidate models. We use a data set of waveforms from 30 earthquakes recorded by 5,820 stations across North America. The results suggest that the tested 3D models capture well long-period waveforms while showing discrepancies in short-periods especially on tangential components. This observation indicates that the smaller-scale heterogeneities and radial anisotropy in the crust and upper mantle are not well constrained. Based on our test results, a hybrid initial model combining S40RTS or S362ANI in the mantle and US.2016 for Vsv and CRUST1.0 for Vsh in the crust is compatible for future FWIs to refine the lithospheric structure of North America. 
    more » « less
  4. Abstract

    The Eastern United States (EUS) has a complex geological history and hosts several seismic active regions. We investigate the subsurface structure beneath the broader EUS. To produce reliable images of the subsurface, we simultaneously invert smoothed P‐wave receiver functions, Rayleigh‐wave phase and group velocity measurements, and Bouguer gravity observations for the 3D shear‐wave speed. Using surface‐wave observations (3–250 s) and spatially smoothed receiver functions, our velocity models are robust, reliable, and rich in detail. The shear‐wave velocity models fit all three types of observations well. The resulting velocity model for the eastern U.S. shows thinner crust beneath New England, the east coast, and the Mississippi Embayment (ME). A relatively thicker crust was found beneath the stable North America craton. A relatively slower upper mantle was imaged beneath New England, the east coast, and western ME. A comparison of crust thickness derived from our model against four recent published models shows first‐order consistency. A relatively small upper mantle low‐speed region correlates with a published P‐wave analysis that has associated the anomaly with a 75 Ma kimberlite volcanic site in Kentucky. We also explored the relationship between the subsurface structure and seismicity in the eastern U.S. We found that earthquakes often locate near regions with seismic velocity variations, but not universally. Not all regions of significant subsurface wave speed changes are loci of seismicity. A weak correlation between upper mantle shear velocity and earthquake focal mechanism has been observed.

     
    more » « less
  5. Abstract

    Seismic anisotropy beneath eastern North America likely reflects both the remnant lithospheric fabrics and the present‐day deformation of the asthenosphere. We report new observations of splitting in core‐refracted shear phases observed over 3–5 years at 33 sites in New Jersey, New York, and states in the New England region and also include data from eight previously studied locations. Our data set emphasizes back azimuthal coverage necessary to capture the directional variation of splitting parameters expected from vertically varying anisotropy. We report single‐phase splitting parameters as well as station‐averaged values based on splitting intensity technique that incorporates all observed records regardless of whether they showed evidence of splitting or not. Trends of averaged fast shear wave polarizations appear coherent and are approximately aligned with absolute plate motion direction. The general disparity between the fast axes and the trend of surface tectonic features suggests a dominant asthenosphere contribution for the observed seismic anisotropy. Averaged delay values systematically increase from ~0.5 s in New Jersey to ~1.4 s in Maine. Splitting parameters vary at all sites, and neighboring stations often show similar patterns of directional variation. We developed criteria to group stations based on their splitting patterns and identified four domains with distinct anisotropic properties. Splitting patterns of three domains suggest a layered anisotropic structure that is geographically variable, outlining distinct regions in the continental mantle, for example, the Proterozoic lithosphere of the Adirondack Mountains. A domain coincident with the North Appalachian Anomaly displays virtually no splitting, implying that the lithospheric fabric was locally erased.

     
    more » « less