skip to main content


Title: Persistence of superoscillations under the Schrödinger equation

The goal of this paper is to provide new proofs of the persistence of superoscillations under the Schrödinger equation. Superoscillations were first put forward by Aharonov and have since received much study because of connections to physics, engineering, signal processing and information theory. An interesting mathematical question is to understand the time evolution of superoscillations under certain Schrödinger equations arising in physics. This paper provides an alternative proof of the persistence of superoscillations by some elementary convergence facts for sequence and series and some connections with certain polynomials and identities in combinatorics. The approach given opens new perspectives to establish persistence of superoscillations for the Schrödinger equation with more general potentials.

 
more » « less
Award ID(s):
1800057
NSF-PAR ID:
10324374
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Evolution Equations and Control Theory
Volume:
11
Issue:
3
ISSN:
2163-2480
Page Range / eLocation ID:
869
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Multi-dimensional direct numerical simulation (DNS) of the Schrödinger equation is needed for design and analysis of quantum nanostructures that offer numerous applications in biology, medicine, materials, electronic/photonic devices, etc. In large-scale nanostructures, extensive computational effort needed in DNS may become prohibitive due to the high degrees of freedom (DoF). This study employs a physics-based reduced-order learning algorithm, enabled by the first principles, for simulation of the Schrödinger equation to achieve high accuracy and efficiency. The proposed simulation methodology is applied to investigate two quantum-dot structures; one operates under external electric field, and the other is influenced by internal potential variation with periodic boundary conditions. The former is similar to typical operations of nanoelectronic devices, and the latter is of interest to simulation and design of nanostructures and materials, such as applications of density functional theory. In each structure, cases within and beyond training conditions are examined. Using the proposed methodology, a very accurate prediction can be realized with a reduction in the DoF by more than 3 orders of magnitude and in the computational time by 2 orders, compared to DNS. An accurate prediction beyond the training conditions, including higher external field and larger internal potential in untrained quantum states, is also achieved. Comparison is also carried out between the physics-based learning and Fourier-based plane-wave approaches for a periodic case.

     
    more » « less
  2. A nonlocal nonlinear Schrödinger (NLS) equation was recently found by the authors and shown to be an integrable infinite dimensional Hamiltonian equation. Unlike the classical (local) case, here the nonlinearly induced “potential” issymmetric thus the nonlocal NLS equation is alsosymmetric. In this paper, newreverse space‐timeandreverse timenonlocal nonlinear integrable equations are introduced. They arise from remarkably simple symmetry reductions of general AKNS scattering problems where the nonlocality appears in both space and time or time alone. They are integrable infinite dimensional Hamiltonian dynamical systems. These include the reverse space‐time, and in some cases reverse time, nonlocal NLS, modified Korteweg‐deVries (mKdV), sine‐Gordon, (1 + 1) and (2 + 1) dimensional three‐wave interaction, derivative NLS, “loop soliton,” Davey–Stewartson (DS), partiallysymmetric DS and partially reverse space‐time DS equations. Linear Lax pairs, an infinite number of conservation laws, inverse scattering transforms are discussed and one soliton solutions are found. Integrable reverse space‐time and reverse time nonlocal discrete nonlinear Schrödinger type equations are also introduced along with few conserved quantities. Finally, nonlocal Painlevé type equations are derived from the reverse space‐time and reverse time nonlocal NLS equations.

     
    more » « less
  3. Abstract A fundamental question in wave turbulence theory is to understand how the wave kinetic equation describes the long-time dynamics of its associated nonlinear dispersive equation. Formal derivations in the physics literature, dating back to the work of Peierls in 1928, suggest that such a kinetic description should hold (for well-prepared random data) at a large kinetic time scale $T_{\mathrm {kin}} \gg 1$ and in a limiting regime where the size L of the domain goes to infinity and the strength $\alpha $ of the nonlinearity goes to $0$ (weak nonlinearity). For the cubic nonlinear Schrödinger equation, $T_{\mathrm {kin}}=O\left (\alpha ^{-2}\right )$ and $\alpha $ is related to the conserved mass $\lambda $ of the solution via $\alpha =\lambda ^2 L^{-d}$ . In this paper, we study the rigorous justification of this monumental statement and show that the answer seems to depend on the particular scaling law in which the $(\alpha , L)$ limit is taken, in a spirit similar to how the Boltzmann–Grad scaling law is imposed in the derivation of Boltzmann’s equation. In particular, there appear to be two favourable scaling laws: when $\alpha $ approaches $0$ like $L^{-\varepsilon +}$ or like $L^{-1-\frac {\varepsilon }{2}+}$ (for arbitrary small $\varepsilon $ ), we exhibit the wave kinetic equation up to time scales $O(T_{\mathrm {kin}}L^{-\varepsilon })$ , by showing that the relevant Feynman-diagram expansions converge absolutely (as a sum over paired trees). For the other scaling laws, we justify the onset of the kinetic description at time scales $T_*\ll T_{\mathrm {kin}}$ and identify specific interactions that become very large for times beyond $T_*$ . In particular, the relevant tree expansion diverges absolutely there. In light of those interactions, extending the kinetic description beyond $T_*$ toward $T_{\mathrm {kin}}$ for such scaling laws seems to require new methods and ideas. 
    more » « less
  4. null (Ed.)
    ABSTRACT We describe and test a family of new numerical methods to solve the Schrödinger equation in self-gravitating systems, e.g. Bose–Einstein condensates or ‘fuzzy’/ultra-light scalar field dark matter. The methods are finite-volume Godunov schemes with stable, higher order accurate gradient estimation, based on a generalization of recent mesh-free finite-mass Godunov methods. They couple easily to particle-based N-body gravity solvers (with or without other fluids, e.g. baryons), are numerically stable, and computationally efficient. Different sub-methods allow for manifest conservation of mass, momentum, and energy. We consider a variety of test problems and demonstrate that these can accurately recover solutions and remain stable even in noisy, poorly resolved systems, with dramatically reduced noise compared to some other proposed implementations (though certain types of discontinuities remain challenging). This is non-trivial because the ‘quantum pressure’ is neither isotropic nor positive definite and depends on higher order gradients of the density field. We implement and test the method in the code gizmo. 
    more » « less
  5. Superoscillating functions are band-limited functions that can oscillate faster than their fastest Fourier component. These functions appear in various fields of science and technology, in particular they were discovered in quantum mechanics in the context of weak values introduced by Y. Aharonov and collaborators. The evolution problem of superoscillatory functions as initial conditions for the Schrödinger equation is intensively studied nowadays and the supershift property of the solution of Schrödinger equation encodes the persistence of superoscillatory phenomenon during the evolution. In this paper, we prove that the evolution of a superoscillatory initial datum for spinning particles in a magnetic field has the supershift property. Our techniques are based on the exact propagator of spinning particles, the associated infinite order differential operators and their continuity on suitable spaces of entire functions with growth conditions. 
    more » « less