skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, September 13 until 2:00 AM ET on Saturday, September 14 due to maintenance. We apologize for the inconvenience.


Title: Lack of Quorum Sensing Leads to Failure of Consensus in Temnothorax Ant Emigration
We investigate the importance of quorum sensing in the success of house-hunting of emigrating Temnothorax ant colonies. Specifically, we show that the absence of the quorum sensing mechanism leads to failure of consensus during emigrations. We tackle this problem through the lens of distributed computing by viewing it as a natural distributed consensus algorithm. We develop an agent-based model of the house-hunting process, and use mathematical tools such as conditional probability, concentration bounds and Markov mixing time to rigorously prove the negative impact of not employing the quorum sensing mechanism on emigration outcomes. Our main result is a high probability bound for failure of consensus without quorum sensing in a two-new-nest environment, which we further extend to the general multiple-new-nest environments. We also show preliminary evidence that appropriate quorum sizes indeed help with consensus during emigrations. Our work provides theoretical foundations to analyze why Temnothorax ants evolved to utilize the quorum rule in their house-hunting process.  more » « less
Award ID(s):
2139936 1810758 2003830
NSF-PAR ID:
10324427
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
23rd International Symposium on Stabilization, Safety, and Security of Distributed Systems (SSS 2021)
Volume:
13046
Page Range / eLocation ID:
209-228
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We study the problem of house-hunting in ant colonies, where ants reach consensus on a new nest and relocate their colony to that nest, from a distributed computing perspective. We propose a house-hunting algorithm that is biologically inspired by Temnothorax ants. Each ant is modeled as a probabilistic agent with limited power, and there is no central control governing the ants. We show an O( log n) lower bound on the running time of our proposed house-hunting algorithm, where n is the number of ants. Furthermore, we show a matching upper bound of expected O( log n) rounds for environments with only one candidate nest for the ants to move to. Our work provides insights into the house-hunting process, giving a perspective on how environmental factors such as nest quality or a quorum rule can affect the emigration process. 
    more » « less
  2. We study the problem of house-hunting in ant colonies, where ants reach consensus on a new nest and relocate their colony to that nest, from a distributed computing perspective. We propose a house-hunting algorithm that is biologically inspired by Temnothorax ants. Each ant is modelled as a probabilistic agent with limited power, and there is no central control governing the ants. We show a (log n) lower bound on the running time of our proposed house-hunting algorithm, where n is the number of ants. Further, we show a matching upper bound of expected O(log n) rounds for environments with only one candidate nest for the ants to move to. Our work provides insights into the house-hunting process, giving a perspective on how environmental factors such as nest qualities or a quorum rule can affect the emigration process. In particular, we find that a quorum threshold that is high enough causes transports to the inferior nest to cease to happen after O(log n) rounds when there are two nests in the environment. 
    more » « less
  3. We study the problem of house-hunting in ant colonies, where ants reach consensus on a new nest and relocate their colony to that nest, from a distributed computing perspective. We propose a house-hunting algorithm that is biologically inspired by Temnothorax ants. Each ant is modelled as a probabilistic agent with limited power, and there is no central control governing the ants. We show a Ω(log n) lower bound on the running time of our proposed house-hunting algorithm, where n is the number of ants. Further, we show a matching upper bound of expected O(log n) rounds for environments with only one candidate nest for the ants to move to. Our work provides insights into the house-hunting process, giving a perspective on how environmental factors such as nest qualities or a quorum rule can affect the emigration process. In particular, we find that a quorum threshold that is high enough causes transports to the inferior nest to cease to happen after O(log n) rounds when there are two nests in the environment. 
    more » « less
  4. The decentralized cognition of animal groups is both a challenging biological problem and a potential basis for bio-inspired design. In this study, we investigated the house-hunting algorithm used by emigrating colonies of Temnothorax ants to reach consensus on a new nest. We developed a tractable model that encodes accurate individual behavior rules, and estimated our parameter values by matching simulated behaviors with observed ones on both the individual and group levels. We then used our model to explore a potential, but yet untested, component of the ants’ decision algorithm. Specifically, we examined the hypothesis that incorporating site population (the number of adult ants at each potential nest site) into individual perceptions of nest quality can improve emigration performance. Our results showed that attending to site population accelerates emigration and reduces the incidence of split decisions. This result suggests the value of testing empirically whether nest site scouts use site population in this way, in addition to the well demonstrated quorum rule. We also used our model to make other predictions with varying degrees of empirical support, including the high cognitive capacity of colonies and their rational time investment during decision-making. Additionally, we provide a versatile and easy-to-use Python simulator that can be used to explore other hypotheses or make testable predictions. It is our hope that the insights and the modeling tools can inspire further research from both the biology and computer science community. 
    more » « less
  5. The decentralized cognition of animal groups is both a challenging biological problem and a potential basis for bio-inspired design. The understanding of these systems and their application can benefit from modeling and analysis of the underlying algorithms. In this study, we define a modeling framework that can be used to formally represent all components of such algorithms. As an example application of the framework, we adapt to it the much-studied house-hunting algorithm used by emigrating colonies of Temnothorax ants to reach consensus on a new nest. We provide a Python simulator that encodes accurate individual behavior rules and produces simulated behaviors consistent with empirical observations, on both the individual and group levels. Critically, through multiple simulated experiments, our results highlight the value of individual sensitivity to site population in ensuring consensus. With the help of this social information, our model successfully reproduces experimental results showing the high cognitive capacity of colonies and their rational time investment during decision-making, and also predicts the pros and cons of social information with regard to the colonies’ ability to avoid and repair splits. Additionally, we use the model to make new predictions about several unstudied aspects of emigration behavior. Our results indicate a more complex relationship between individual behavior and the speed/accuracy trade-off than previously appreciated. The model proved relatively weak at resolving colony divisions among multiple sites, suggesting either limits to the ants’ ability to reach consensus, or an aspect of their behavior not captured in our model. 
    more » « less