skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Empirical formulation for multiple groups of primary biological ice nucleating particles from field observations over Amazonia
Abstract To resolve the various types of biological ice nuclei (IN) with atmospheric models, an extension of the empirical parameterization (EP) (Phillips et al. 2008; 2013) is proposed to predict the active IN from multiple groups of primary biological aerosol particles (PBAPs). Our approach is to utilize coincident observations of PBAP sizes, concentrations, biological composition, and ice-nucleating ability. The parameterization organizes the PBAPs into five basic groups: fungal spores, bacteria, pollen, viral particles, plant/animal detritus, algae, and their respective fragments. This new biological component of the EP was constructed by fitting predicted concentrations of PBAP IN to those observed at the Amazon Tall Tower Observatory (ATTO) site located in the central Amazon. The fitting parameters for pollen and viral particles, plant/animal detritus, which are much less active as IN than fungal and bacterial groups, are constrained based on their ice nucleation activity from the literature. The parameterization has empirically derived dependencies on the surface area of each group (except algae), and the effects of variability in their mean sizes and number concentrations are represented via their influences on the surface area. The concentration of active algal IN is estimated from literature-based measurements. Predictions of this new biological component of the EP are consistent with previous laboratory and field observations not used in its construction. The EP scheme was implemented in a 0D parcel model. It confirms that biological IN account for most of the total IN activation at temperatures warmer than −20°C and at colder temperatures dust and soot become increasingly more important to ice nucleation.  more » « less
Award ID(s):
1660486
PAR ID:
10324445
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Journal of the Atmospheric Sciences
ISSN:
0022-4928
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Various aerosols, including mineral dust, soot, and biological particles, can act as ice nuclei, initiating the freezing of supercooled cloud droplets. Cloud droplet freezing significantly impacts cloud properties and, consequently, weather and climate. Some biological ice nuclei exhibit exceptionally high nucleation temperatures close to 0 °C. Ice-nucleating macromolecules (INMs) found on pollen are typically not considered among the most active ice nuclei. Still, they can be highly abundant, especially for species such as Betula pendula, a widespread birch tree species in the boreal forest. Recent studies have shown that certain tree-derived INMs exhibit ice nucleation activity above −10 °C, suggesting they could play a more significant role in atmospheric processes than previously understood. Our study reveals that three distinct INM classes active at −8.7, −15.7, and −17.4 °C are present in B. pendula. Freeze drying and freeze–thaw cycles noticeably alter their ice nucleation capability, and the results of heat treatment, size, and chemical analysis indicate that INM classes correspond to size-varying aggregates, with larger aggregates nucleating ice at higher temperatures, in agreement with previous studies on fungal and bacterial ice nucleators. Our findings suggest that B. pendula INMs are potentially important for atmospheric ice nucleation because of their high prevalence and nucleation temperatures. 
    more » « less
  2. Abstract. Some biological particles, such as Snomax, are very active ice nucleating particles, inducing heterogeneous freezing in supercooled water at temperatures above −15 and up to −2 °C. Despite their exceptional freezing abilities, large uncertainties remain regarding the atmospheric abundance of biological ice nucleating particles, and their contribution to atmospheric ice nucleation. It has been suggested that small biological ice nucleating macromolecules or fragments can be carried on the surfaces of dust and other atmospheric particles. This could combine the atmospheric abundance of dust particles with the ice nucleating strength of biological material to create strongly enhanced and abundant ice nucleating surfaces in the atmosphere, with significant implications for the budget and distribution of atmospheric ice nucleating particles, and their consequent effects on cloud microphysics and mixed-phase clouds. The new critical surface area g framework that was developed by Beydoun et al. (2016) is extended to produce a heterogeneous ice nucleation mixing model that can predict the freezing behavior of multicomponent particle surfaces immersed in droplets. The model successfully predicts the immersion freezing properties of droplets containing Snomax bacterial particles across a mass concentration range of 7 orders of magnitude, by treating Snomax as comprised of two distinct distributions of heterogeneous ice nucleating activity. Furthermore, the model successfully predicts the immersion freezing behavior of a low-concentration mixture of Snomax and illite mineral particles, a proxy for the biological material–dust (bio-dust) mixtures observed in atmospheric aerosols. It is shown that even at very low Snomax concentrations in the mixture, droplet freezing at higher temperatures is still determined solely by the second less active and more abundant distribution of heterogeneous ice nucleating activity of Snomax, while freezing at lower temperatures is determined solely by the heterogeneous ice nucleating activity of pure illite. This demonstrates that in this proxy system, biological ice nucleating particles do not compromise their ice nucleating activity upon mixing with dust and no new range of intermediary freezing temperatures associated with the mixture of ice nucleating particles of differing activities is produced. The study is the first to directly examine the freezing behavior of a mixture of Snomax and illite and presents the first multicomponent ice nucleation model experimentally evaluated using a wide range of ice nucleating particle concentration mixtures in droplets. 
    more » « less
  3. Abstract. From extracellular freezing to cloud glaciation, the crystallization of water is ubiquitous and shapes life as we know it. Efficient biological ice nucleators (INs) are crucial for organism survival in cold environments and, when aerosolized, serve as a significant source of atmospheric ice nuclei. Several lichen species have been identified as potent INs capable of inducing freezing at high subzero temperatures. Despite their importance, the abundance and diversity of lichen INs are still not well understood. Here, we investigate ice nucleation activity in the cyanolichen-forming genus Peltigera from across a range of ecosystems in the Arctic, the northwestern United States, and Central and South America. We find strong IN activity in all tested Peltigera species, with ice nucleation temperatures above −12 °C and 35 % of the samples initiating freezing at temperatures at or above −6.2 °C. The Peltigera INs in aqueous extract appear to be resistant to freeze–thaw cycles, suggesting that they can survive dispersal through the atmosphere and thereby potentially influence precipitation patterns. An axenic fungal culture termed L01-tf-B03, from the lichen Peltigera britannica JNU22, displays an ice nucleation temperature of −5.6 °C at 1 mg mL−1 and retains remarkably high IN activity at concentrations as low as 0.1 ng mL−1. Our analysis suggests that the INs released from this fungus in culture are 1000 times more potent than the most active bacterial INs from Pseudomonas syringae. The global distribution of Peltigera lichens, in combination with the IN activity, emphasizes their potential to act as powerful ice-nucleating agents in the atmosphere. 
    more » « less
  4. Data from both laboratory studies and atmospheric measurements are used to develop an empirical parameterization for the immersion freezing activity of natural mineral dust particles. Measurements made with the Colorado State University (CSU) continuous flow diffusion chamber (CFDC) when processing mineral dust aerosols at a nominal 105% relative humidity with respect to water (RHw) are taken as a measure of the immersion freezing nucleation activity of particles. Ice active frozen fractions vs. temperature for dusts representative of Saharan and Asian desert sources were consistent with similar measurements in atmospheric dust plumes for a limited set of comparisons available. The parameterization developed follows the form of one suggested previously for atmospheric particles of non-specific composition in quantifying ice nucleating particle concentrations as functions of temperature and the total number concentration of particles larger than 0.5 μm diameter. Such an approach does not explicitly account for surface area and time dependencies for ice nucleation, but sufficiently encapsulates the activation properties for potential use in regional and global modeling simulations, and possible application in developing remote sensing retrievals for ice nucleating particles. A calibration factor is introduced to account for the apparent underestimate (by approximately 3, on average) of the immersion freezing fraction of mineral dust particles for CSU CFDC data processed at an RHw of 105% vs. maximum fractions active at higher RHw. Instrumental factors that affect activation behavior vs. RHw in CFDC instruments remain to be fully explored in future studies. Nevertheless, the use of this calibration factor is supported by comparison to ice activation data obtained for the same aerosols from Aerosol Interactions and Dynamics of the Atmosphere (AIDA) expansion chamber cloud parcel experiments. Further comparison of the new parameterization, including calibration correction, to predictions of the immersion freezing surface active site density parameterization for mineral dust particles, developed separately from AIDA experimental data alone, shows excellent agreement for data collected in a descent through a Saharan aerosol layer. These studies support the utility of laboratory measurements to obtain atmospherically relevant data on the ice nucleation properties of dust and other particle types, and suggest the suitability of considering all mineral dust as a single type of ice nucleating particle as a useful first-order approximation in numerical modeling investigations. 
    more » « less
  5. Abstract. Heterogeneous ice nucleation is thought to be the primary pathway for the formation of ice in mixed-phase clouds, with the number of active ice-nucleating particles (INPs) increasing rapidly with decreasing temperature. Here, molecular-dynamics simulations of heterogeneous ice nucleation demonstrate that the ice nucleation rate is also sensitive to pressure and that negative pressure within supercooled water shifts freezing temperatures to higher temperatures. Negative pressure, or tension, occurs naturally in water capillary bridges and pores and can also result from water agitation. Capillary bridge simulations presented in this study confirm that negative Laplace pressure within the water increases heterogeneous-freezing temperatures. The increase in freezing temperatures with negative pressure is approximately linear within the atmospherically relevant range of 1 to −1000 atm. An equation describing the slope depends on the latent heat of freezing and the molar volume difference between liquid water and ice. Results indicate that negative pressures of −500 atm, which correspond to nanometer-scale water surface curvatures, lead to a roughly 4 K increase in heterogeneous-freezing temperatures. In mixed-phase clouds, this would result in an increase of approximately 1 order of magnitude in active INP concentrations. The findings presented here indicate that any process leading to negative pressure in supercooled water may play a role in ice formation, consistent with experimental evidence of enhanced ice nucleation due to surface geometry or mechanical agitation of water droplets. This points towards the potential for dynamic processes such as contact nucleation and droplet collision or breakup to increase ice nucleation rates through pressure perturbations. 
    more » « less