Nonoverlapping sequential pattern mining is an important type of sequential pattern mining (SPM) with gap constraints, which not only can reveal interesting patterns to users but also can effectively reduce the search space using the Apriori (anti-monotonicity) property. However, the existing algorithms do not focus on attributes of interest to users, meaning that existing methods may discover many frequent patterns that are redundant. To solve this problem, this article proposes a task called nonoverlapping three-way sequential pattern (NTP) mining, where attributes are categorized according to three levels of interest: strong, medium, and weak interest. NTP mining can effectively avoid mining redundant patterns since the NTPs are composed of strong and medium interest items. Moreover, NTPs can avoid serious deviations (the occurrence is significantly different from its pattern) since gap constraints cannot match with strong interest patterns. To mine NTPs, an effective algorithm is put forward, called NTP-Miner, which applies two main steps: support (frequency occurrence) calculation and candidate pattern generation. To calculate the support of an NTP, depth-first and backtracking strategies are adopted, which do not require creating a whole Nettree structure, meaning that many redundant nodes and parent–child relationships do not need to be created. Hence, time and space efficiency is improved. To generate candidate patterns while reducing their number, NTP-Miner employs a pattern join strategy and only mines patterns of strong and medium interest. Experimental results on stock market and protein datasets show that NTP-Miner not only is more efficient than other competitive approaches but can also help users find more valuable patterns. More importantly, NTP mining has achieved better performance than other competitive methods in clustering tasks. Algorithms and data are available at: https://github.com/wuc567/Pattern-Mining/tree/master/NTP-Miner .
more »
« less
RHPTree—Risk Hierarchical Pattern Tree for Scalable Long Pattern Mining
Risk patterns are crucial in biomedical research and have served as an important factor in precision health and disease prevention. Despite recent development in parallel and high-performance computing, existing risk pattern mining methods still struggle with problems caused by large-scale datasets, such as redundant candidate generation, inability to discover long significant patterns, and prolonged post pattern filtering. In this article, we propose a novel dynamic tree structure, Risk Hierarchical Pattern Tree (RHPTree), and a top-down search method, RHPSearch, which are capable of efficiently analyzing a large volume of data and overcoming the limitations of previous works. The dynamic nature of the RHPTree avoids costly tree reconstruction for the iterative search process and dataset updates. We also introduce two specialized search methods, the extended target search (RHPSearch-TS) and the parallel search approach (RHPSearch-SD), to further speed up the retrieval of certain items of interest. Experiments on both UCI machine learning datasets and sampled datasets of the Simons Foundation Autism Research Initiative (SFARI)—Simon’s Simplex Collection (SSC) datasets demonstrate that our method is not only faster but also more effective in identifying comprehensive long risk patterns than existing works. Moreover, the proposed new tree structure is generic and applicable to other pattern mining problems.
more »
« less
- Award ID(s):
- 1946619
- PAR ID:
- 10324607
- Date Published:
- Journal Name:
- ACM Transactions on Knowledge Discovery from Data
- Volume:
- 16
- Issue:
- 4
- ISSN:
- 1556-4681
- Page Range / eLocation ID:
- 1 to 33
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We present MCRapper, an algorithm for efficient computation of Monte-Carlo Empirical Rademacher Averages (MCERA) for families of functions exhibiting poset (e.g., lattice) structure, such as those that arise in many pattern mining tasks. The MCERA allows us to compute upper bounds to the maximum deviation of sample means from their expectations, thus it can be used to find both statistically-significant functions (i.e., patterns) when the available data is seen as a sample from an unknown distribution, and approximations of collections of high-expectation functions (e.g., frequent patterns) when the available data is a small sample from a large dataset. This feature is a strong improvement over previously proposed solutions that could only achieve one of the two. MCRapper uses upper bounds to the discrepancy of the functions to efficiently explore and prune the search space, a technique borrowed from pattern mining itself. To show the practical use of MCRapper, we employ it to develop an algorithm TFP-R for the task of True Frequent Pattern (TFP) mining. TFP-R gives guarantees on the probability of including any false positives (precision) and exhibits higher statistical power (recall) than existing methods offering the same guarantees. We evaluate MCRapper and TFP-R and show that they outperform the state-of-the-art for their respective tasks.more » « less
-
Mining textual patterns in news, tweets, papers, and many other kinds of text corpora has been an active theme in text mining and NLP research. Previous studies adopt a dependency parsing-based pattern discovery approach. However, the parsing results lose rich context around entities in the patterns, and the process is costly for a corpus of large scale. In this study, we propose a novel typed textual pattern structure, called meta pattern, which is extended to a frequent, informative, and precise subsequence pattern in certain context. We propose an efficient framework, called MetaPAD, which discovers meta patterns from massive corpora with three techniques: (1) it develops a context-aware segmentation method to carefully determine the boundaries of patterns with a learnt pattern quality assessment function, which avoids costly dependency parsing and generates high-quality patterns; (2) it identifies and groups synonymous meta patterns from multiple facets—their types, contexts, and extractions; and (3) it examines type distributions of entities in the instances extracted by each group of patterns, and looks for appropriate type levels to make discovered patterns precise. Experiments demonstrate that our proposed framework discovers high-quality typed textual patterns efficiently from different genres of massive corpora and facilitates information extraction.more » « less
-
“I’m an MC still as honest” – Eminem, Rap God We present MCRapper , an algorithm for efficient computation of Monte-Carlo Empirical Rademacher Averages (MCERA) for families of functions exhibiting poset (e.g., lattice) structure, such as those that arise in many pattern mining tasks. The MCERA allows us to compute upper bounds to the maximum deviation of sample means from their expectations, thus it can be used to find both (1) statistically-significant functions (i.e., patterns) when the available data is seen as a sample from an unknown distribution, and (2) approximations of collections of high-expectation functions (e.g., frequent patterns) when the available data is a small sample from a large dataset. This flexibility offered by MCRapper is a big advantage over previously proposed solutions, which could only achieve one of the two. MCRapper uses upper bounds to the discrepancy of the functions to efficiently explore and prune the search space, a technique borrowed from pattern mining itself. To show the practical use of MCRapper , we employ it to develop an algorithm TFP-R for the task of True Frequent Pattern (TFP) mining, by appropriately computing approximations of the negative and positive borders of the collection of patterns of interest, which allow an effective pruning of the pattern space and the computation of strong bounds to the supremum deviation. TFP-R gives guarantees on the probability of including any false positives (precision) and exhibits higher statistical power (recall) than existing methods offering the same guarantees. We evaluate MCRapper and TFP-R and show that they outperform the state-of-the-art for their respective tasks.more » « less
-
Non-negative matrix factorization (NMF), the problem of finding two non-negative low-rank factors whose product approximates an input matrix, is a useful tool for many data mining and scientific applications such as topic modeling in text mining and unmixing in microscopy. In this paper, we focus on scaling algorithms for NMF to very large sparse datasets and massively parallel machines by employing effective algorithms, communication patterns, and partitioning schemes that leverage the sparsity of the input matrix. We consider two previous works developed for related problems,one that uses a fine-grained partitioning strategy using a point-to-point communication pattern and one that uses a Cartesian, or checkerboard, partitioning strategy using a collective-based communication pattern. We show that a combination of the previous approaches balances the demands of the various computations within NMF algorithms and achieves high efficiency and scalability. From the experiments, we see that our proposed strategy runs up to 10x faster than the state of the art on real-world datasets.more » « less