skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Instability of Charge Qubit Outfitted in a Double Quantum Dot
We study electron tunneling in binary quantum systems as double quantum dot (DQD) and double quantum well (DQW), considered as two-level systems. The Schrodinger equation for this system is reduced using single band kp-effective Hamiltonian, and is solved numerically. We calculate full electron spectrum E, n = 1,2 ... in the bi-confinement potential. The tunneling in DQD is studied in relation to two factors, a coupling coefficient W and an asymmetry factor A of the potential. The ratio W/A defines the electron localization in DQD. The cases of ideal and almost ideal DQD are examined and compared. We are modeling the effects of environmental influence and fluctuations of electrical pulse on the coherence of DQD based charge qubit. In particular, we show that the coupling in the ideal DQD (A=0) is unstable for any small fluctuations of A.  more » « less
Award ID(s):
2101220
PAR ID:
10324611
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Mathematical Modelling and Geometry
Issue:
3
ISSN:
2311-1275
Page Range / eLocation ID:
1 to 15
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The coupled electronic states in two-dimensional (2D) and three-dimensional (3D) double quantum dot (DQD) systems are investigated using a phenomenological model applied to InAs/GaAs heterostructures. The single-band k · p effective potential approach previously proposed by our group is employed to numerically calculate the energy spectrum and spatial localization of a single electron, serving as an indicator of the coupling strength within the binary system. For identical quantum dots (QDs) in a DQD, the electronic states exhibit ideal coherence. We systematically vary the DQD geometry and the strength of the confinement potential (via an applied electric field) to examine the effects of symmetry breaking and the sensitivity of electron localization in both identical and nearly identical DQDs. Our results show that coherence in DQDs is highly sensitive to these subtle variations. This sensitivity can be harnessed to detect changes in the surrounding environment, such as fluctuations in chemical or electrical properties that affect the DQD system. 
    more » « less
  2. In this paper, we study the localization of an electron in a binary quantum system formed by a pair of quantum dots (QDs). The traditional theoretical consideration of such systems is limited to the symmetrical case when QDs in such double quantum dot (DQD) are assumed identical in all respects. In this paper, we model the effects of breaking QD similarities in a DQD by studying two-dimensional (2D) DQDs as a double quantum well (DQW). This is done by solving the Schrödinger equation, with parameters chosen to describe an InAs/GaAs heterostructure. We calculate the energy spectrum of the electron confinement and the spectral distribution of localized/delocalized spatial states. Both symmetric and asymmetric QW shapes are considered and their effects are compared. The effects of symmetry breaking are explained within the framework of the two-level system theory. We delineate the QW weak and strong coupling cases in DQW. In particular, we show that the coherence in ideal DQW is unstable in the case of a weak QW coupling. Within the framework of the proposed approach, a charge qubit realized on a DQD is discussed and, as an example, a qubit based on an almost ideal DQD is proposed. 
    more » « less
  3. We investigate electron tunneling between quantum dots and molecules to propose a quantum sensor. This sensor consists of double quantum dots (DQD) with energy levels specifically tailored to mirror those of the target analyte. By analyzing the spectral distribution of electron localizations in the DQD system, we can delineate the analyte’s spectrum and deduce its composition by comparing it with a reference sample. To understand electron tunneling dynamics within the DQD/analyte complex, we performed three-dimensional computational modeling applying the effective potential approach to the InAs/GaAs heterostructure. In this modeling, we mimicked the analyte spectrum by utilizing a quantum well characterized by a quasi-discrete spectrum. Our calculations reveal the inherent potential of utilizing this method as a highly sensitive and selective sensor. 
    more » « less
  4. Proton transfer and hydrogen tunneling play key roles in many processes of chemical and biological importance. The generalized nuclear-electronic orbital multistate density functional theory (NEO-MSDFT) method was developed in order to capture hydrogen tunneling effects in systems involving the transfer and tunneling of one or more protons. The generalized NEO-MSDFT method treats the transferring protons quantum mechanically on the same level as the electrons and obtains the delocalized vibronic states associated with hydrogen tunneling by mixing localized NEO-DFT states in a nonorthogonal configuration interaction scheme. Herein, we present the derivation and implementation of analytical gradients for the generalized NEO-MSDFT vibronic state energies and the nonadiabatic coupling vectors between these vibronic states. We use this methodology to perform adiabatic and nonadiabatic dynamics simulations of the double proton transfer reactions in the formic acid dimer and the heterodimer of formamidine and formic acid. The generalized NEO-MSDFT method is shown to capture the strongly coupled synchronous or asynchronous tunneling of the two protons in these processes. Inclusion of vibronically nonadiabatic effects is found to significantly impact the double proton transfer dynamics. This work lays the foundation for a variety of nonadiabatic dynamics simulations of multiple proton transfer systems, such as proton relays and hydrogen-bonding networks. 
    more » « less
  5. Long electron spin coherence lifetimes are crucial for high sensitivity and resolution in many pulse electron paramagnetic resonance (EPR) experiments aimed at measuring hyperfine and dipolar couplings, as well as in potential quantum sensing applications of molecular spin qubits. In immobilized systems, methyl groups contribute significantly to electron spin decoherence as a result of methyl torsional quantum tunneling. We examine the electron spin decoherence dynamics of the nitroxide radical 2,2,6,6-tetramethylpiperidin-1-oxyl (TEMPO) in both a methyl-free solvent and a methyl-containing solvent at cryogenic temperature. We model nitroxide and solvent methyl effects on decoherence using cluster correlation expansion (CCE) simulations extended to include methyl tunneling and compare the calculations to experimental data. We show that by using the methyl tunneling frequency as a fit parameter, experimental Hahn echo decays can be reproduced fairly well, allowing structural properties to be investigated in silico. In addition, we examine the Hahn echo of a hypothetical system with an unpaired electron and a single methyl to determine the effect of geometric configuration on methyl-driven electron spin decoherence. The simulations show that a methyl group contributes the most to electron spin decoherence if it is located between 2.5 and 6–7 Å from the electron spin, with its orientation being of secondary importance. 
    more » « less