The accelerated degradation test (ADT) is an efficient tool for assessing the lifetime information of highly reliable products. However, conducting an ADT is very expensive. Therefore, how to conduct a cost‐constrained ADT plan is a great challenging issue for reliability analysts. By taking the experimental cost into consideration, this paper proposes a semi‐analytical procedure to determine the total sample size, testing stress levels, the measurement frequencies, and the number of measurements (within a degradation path) globally under a class of exponential dispersion degradation models. The proposed method is also extended to determine the global planning of a three‐level compromise plan. The advantage of the proposed method not only provides better design insights for conducting an ADT plan, but also provides an efficient algorithm to obtain a cost‐constrained ADT plan, compared with conventional optimal plans by grid search algorithms.
- NSF-PAR ID:
- 10324622
- Date Published:
- Journal Name:
- Frontiers in Robotics and AI
- Volume:
- 8
- ISSN:
- 2296-9144
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
We consider a variant of the Multi-Agent Path-Finding problem that seeks both task assignments and collision-free paths for a set of agents navigating on a graph, while minimizing the sum of costs of all agents. Our approach extends Conflict-Based Search (CBS), a framework that has been previously used to find collision-free paths for a given fixed task assignment. Our approach is based on two key ideas: (i) we operate on a search forest rather than a search tree; and (ii) we create the forest on demand, avoiding a factorial explosion of all possible task assignments. We show that our new algorithm, CBS-TA, is complete and optimal. The CBS framework allows us to extend our method to ECBS-TA, a bounded suboptimal version. We provide extensive empirical results comparing CBS-TA to task assignment followed by CBS, Conflict-Based Min-Cost-Flow (CBM), and an integer linear program (ILP) solution, demonstrating the advantages of our algorithm. Our results highlight a significant advantage in jointly optimizing the task assignment and path planning for very dense cases compared to the traditional method of solving those two problems independently. For large environments with many robots we show that the traditional approach is reasonable, but that we can achieve similar results with the same runtime but stronger suboptimality guarantees.more » « less
-
We present a lazy incremental search algorithm, Lifelong-GLS (L-GLS), along with its bounded suboptimal version, Bounded L-GLS (B-LGLS) that combine the search efficiency of incremental search algorithms with the evaluation efficiency of lazy search algorithms for fast replanning in problem domains where edge evaluations are more expensive than vertex expansions. The proposed algorithms generalize Lifelong Planning A* (LPA*) and its bounded suboptimal version, Truncated LPA* (TLPA*), within the Generalized Lazy Search (GLS) framework, so as to restrict expensive edge evaluations only to the current shortest subpath when the cost-to-come inconsistencies are propagated during repair. We also present dynamic versions of the L-GLS and B-LGLS algorithms, called Generalized D* (GD*) and Bounded Generalized D* (B-GD*), respectively, for efficient replanning with non-stationary queries, designed specifically for navigation of mobile robots. We prove that the proposed algorithms are complete and correct in finding a solution that is guaranteed not to exceed the optimal solution cost by a user-chosen factor. Our numerical and experimental results support the claim that the proposed integration of the incremental and lazy search frameworks can help find solutions faster compared to the regular incremental or regular lazy search algorithms when the underlying graph representation changes often.
-
The existing vehicle obstacle avoidance path planning methods generally aim at obtaining the collision-free path, ignoring the impact of the planned path on the vehicle stability in the obstacle avoidance process, so that the controlled vehicle has the risk of rollover in the obstacle avoidance process. To solve the above problems, a two-layer obstacle avoidance path planning algorithm considering path pre-planning and re-planning is proposed in this paper. In the path pre-planning layer, an improved APF algorithm with road boundary function constraints is proposed. By introducing the repulsion field adjustment factor, the shortcomings of GNRON and local optimization existing in the existing artificial potential field method are effectively solved. In the path re-planning layer, taking the rollover stability index as the constraint, a pre-planning result optimization method based on particle swarm optimization algorithm is proposed. The simulation results show that the obstacle avoidance path planning algorithm proposed in this paper can not only generate the obstacle avoidance path in real-time, but also reduce the yaw rate and yaw angle of the main vehicle in the process of obstacle avoidance, and effectively improve the rollover stability of the vehicle in the process of obstacle avoidance.
-
null (Ed.)The main objective of an unmanned aerial vehicle (UAV) path planning is to generate a flight path that links a start point to an endpoint in an indoor space avoiding obstacles. Path planning is essential for many real-life applications such as an autonomous car, surveillance mission, farming robots, unmanned aerial vehicles package delivery, space exploration, and many others. To create an optimal path, we need to adopt a specific criterion to minimize the distance the UAV must travel such as the Euclidean distance. In this paper, we provide our initial idea of creating an optimal path for indoor UAV using both A* and the Late Acceptance Hill Climbing (LAHC) algorithms. We are adopting an indoor search environment with various complexity and utilize the Probabilistic Roadmap algorithm (PRM) as a search space for both algorithms. The basic idea following PRM is to generate random sample points in the space and search these points for an optimal path. The developed results show that the LAHC algorithm outperforms the A* algorithm.more » « less