skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Sea otter effects on trophic structure of seagrass communities in southeast Alaska
Previous research in southeast Alaska on the effects of sea otters Enhydra lutris in seagrass Zostera marina communities identified many but not all of the trophic relationships that were predicted by a sea otter-mediated trophic cascade. To further resolve these trophic connections, we compared biomass, carbon (δ 13 C) and nitrogen (δ 15 N) stable isotope (SI), and fatty acid (FA) data from 16 taxa at 3 sites with high and 3 sites with low sea otter density (8.2 and 0.1 sea otters km -2 , respectively). We found lower crab and clam biomass in the high sea otter region but did not detect a difference in biomass of other seagrass community taxa or the overall community isotopic niche space between sea otter regions. Only staghorn sculpin differed in δ 13 C between regions, and Fucus , sugar kelp, butter clams, dock shrimp, and shiner perch differed in δ 15 N. FA analysis indicated multivariate dissimilarity in 11 of the 15 conspecifics between sea otter regions. FA analysis found essential FAs, which consumers must obtain from their diet, including 20:5ω3 (EPA) and 22:6ω3 (DHA), were common in discriminating conspecifics between sea otter regions, suggesting differences in consumer diets. Further FA analysis indicated that many consumers rely on diverse diets, regardless of sea otter region, potentially buffering these consumers from sea otter-mediated changes to diet availability. While sea otters are major consumers in this system, further studies are needed to understand the mechanisms responsible for the differences in biomarkers between regions with and without sea otters.  more » « less
Award ID(s):
1600230
PAR ID:
10324673
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Marine Ecology Progress Series
Volume:
674
ISSN:
0171-8630
Page Range / eLocation ID:
37 to 58
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Two complementary approaches were used to assess year-round variation in the diet of sea otters Enhydra lutris around Prince of Wales Island (POW) in southern Southeast Alaska, a region characterized by mixed-bottom habitat. We observed sea otters foraging to determine diet composition during the spring and summer. Then, we obtained sea otter vibrissae, which record temporal foraging patterns as they grow, from subsistence hunters to identify year-round changes in sea otter diets via stable isotope analysis of carbon (δ 13 C) and nitrogen (δ 15 N). We compared the stable isotopes from sea otter vibrissae and sea otter prey items that were collected during spring, summer, and winter. Overall, year-round sea otter diet estimates from stable isotope signatures and visual observations from spring and summer were dominated by clams in terms of biomass, with butter clams Saxidomus gigantea the most common clam species seen during visual observations. Our results indicate that these sea otters, when considered together at a regional level around POW, do not exhibit shifts in the main prey source by season or location. However, sea otter diets identified by stable isotopes had a strong individual-level variation. Behavioral variation among individual sea otters may be a primary driving factor in diet composition. This study provides quantitative diet composition data for modeling predictions of invertebrate population estimates that may aid in the future management of shellfisheries and subsistence hunting and the development of co-management strategies for this protected species. 
    more » « less
  2. Humans were considered external drivers in much foundational ecological research. A recognition that humans are embedded in the complex interaction networks we study can provide new insight into our ecological paradigms. Here, we use time-series data spanning three decades to explore the effects of human harvesting on otter–urchin–kelp trophic cascades in southeast Alaska. These effects were inferred from variation in sea urchin and kelp abundance following the post fur trade repatriation of otters and a subsequent localized reduction of otters by human harvest in one location. In an example of a classic trophic cascade, otter repatriation was followed by a 99% reduction in urchin biomass density and a greater than 99% increase in kelp density region wide. Recent spatially concentrated harvesting of otters was associated with a localized 70% decline in otter abundance in one location, with urchins increasing and kelps declining in accordance with the spatial pattern of otter occupancy within that region. While the otter–urchin–kelp trophic cascade has been associated with alternative community states at the regional scale, this research highlights how small-scale variability in otter occupancy, ostensibly due to spatial variability in harvesting or the risk landscape for otters, can result in within-region patchiness in these community states. 
    more » « less
  3. Abstract Animals often consume resources from multiple energy channels, thereby connecting food webs and driving trophic structure. Such ‘multichannel feeding’ can dictate ecosystem function and stability, but tools to quantify this process are lacking. Stable isotope ‘fingerprints’ are unique patterns in essential amino acid (EAA) δ13C values that vary consistently between energy channels like primary production and detritus, and they have emerged as a tool to trace energy flow in wild systems. Because animals cannot synthesize EAAs de novo and must acquire them from dietary proteins, ecologists often assume δ13C fingerprints travel through food webs unaltered. Numerous studies have used this approach to quantify energy flow and multichannel feeding in animals, but δ13C fingerprinting has never been experimentally tested in a vertebrate consumer.We tested the efficacy of δ13C fingerprinting using captive deer micePeromyscus maniculatusraised on diets containing bacterial, fungal and plant protein, as well as a combination of all three sources. We measured the transfer of δ13C fingerprints from diet to consumer liver, muscle and bone collagen, and we used linear discriminant analysis (LDA) and isotopic mixing models to estimate dietary proportions compared to known contributions. Lastly, we tested the use of published δ13C source fingerprints previously used to estimate energy flow and multichannel feeding by consumers.We found that EAA δ13C values exhibit significant isotopic (i.e. trophic) fractionation between consumer tissues and diets. Nevertheless, LDA revealed that δ13C fingerprints are consistently routed and assimilated into consumer tissues, regardless of isotopic incorporation rate. Isotopic mixing models accurately estimated the proportional diets of consumers, but all models overestimated plant‐based protein contributions, likely due to the digestive efficiencies of protein sources. Lastly, we found that δ13C source fingerprints from published literature can lead to erroneous diet reconstruction.We show that δ13C fingerprints accurately measure energy flow to vertebrate consumers across tissues with different isotopic incorporation rates, thereby enabling the estimation of multichannel feeding at various temporal scales. Our findings illustrate the power of δ13C fingerprinting for quantifying food web dynamics, but also reveal that careful selection of dietary source data is critical to the accuracy of this emerging technique. 
    more » « less
  4. Abstract Marine resource subsidies alter consumer dynamics of recipient populations in coastal systems. The response to these subsidies by generalist consumers is often not uniform, creating inter- and intrapopulation diet variation and niche diversification that may be intensified across heterogeneous landscapes. We sampled western fence lizards,Sceloporus occidentalis, from Puget Sound beaches and coastal and inland forest habitats, in addition to the lizards’ marine and terrestrial prey items to quantify marine and terrestrial resource use with stable isotope analysis and mixing models. Beach lizards had higher average δ13C and δ15N values compared to coastal and inland forest lizards, exhibiting a strong mixing line between marine and terrestrial prey items. Across five beach sites, lizard populations received 20–51% of their diet from marine resources, on average, with individual lizards ranging between 7 and 86% marine diet. The hillslope of the transition zone between marine and terrestrial environments at beach sites was positively associated with marine-based diets, as the steepest sloped beach sites had the highest percent marine diets. Within-beach variation in transition zone slope was positively correlated with the isotopic niche space of beach lizard populations. These results demonstrate that physiography of transitional landscapes can mediate resource flow between environments, and variable habitat topography promotes niche diversification within lizard populations. Marine resource subsidization of Puget Sound beachS. occidentalispopulations may facilitate occupation of the northwesternmost edge of the species range. Shoreline restoration and driftwood beach habitat conservation are important to support the unique ecology of Puget SoundS. occidentalis. 
    more » « less
  5. Abstract The Trophic Disruption Hypothesis (TDH) predicts that invasive species may cause native species to undergo trophic dispersion (change in trophic‐niche area) and trophic displacement (diet switching), predictably altering food‐web structure and biodiversity. In Everglades National Park, Florida, USA, African Jewelfish (Rubricatochromis letourneuxi) density has recently (2012–2017) undergone a boom‐bust cycle, linked to declines of native taxa and altered aquatic‐community composition that persist after the bust. Everglades restoration efforts seek to restore historic hydrologic conditions that may contribute to food‐web changes unfolding coincidentally with the jewelfish boom. We used complementary datasets of stomach contents and stable isotopes (δ15N and δ13C) to quantify pre‐ and post‐invasion consumer diets, trophic positions, trophic niches, basal energy use (autotrophic vs. heterotrophic), and energy fluxes to test assumptions of the TDH. The direction of change for these metrics from dry season to wet‐season post‐invasion (i.e., effect of adding water) was used as a proxy for the direction of effects from restored water delivery. For trophic shifts attributable to jewelfish invasion, we tested assumptions of the TDH. Comparing pre‐ versus post‐invasion for native consumers, we observed trophic displacement in 42% of species size classes (based on stomach contents), trophic dispersion for 57% of species (based on stable isotopes) and 54% of species size classes (based on stomach contents), and overall greater reliance on autotrophic energy. Altered trophic dynamics were more frequent pre‐ versus post‐invasion than among habitats or between seasons, and the direction of those responses was in the opposite direction of dry‐season to wet‐season differences and/or occurred at a higher frequency. Post‐invasion food‐web structure and function revealed increased relative abundance of mesopredators (including African Jewelfish) and reduced biomass and energy fluxes into and out of small fishes (e.g., Cyprinodontiformes). Our results show that African Jewelfish invasion is linked to altered spatiotemporal trophic dynamics and energy fluxes through declines in native fishes and invertebrates, which indirectly affected trophic relationships at the regional scale in the Everglades. As a result, we suggest extending the TDH to explicitly include the potential for invasive species to alter basal energy use, spatiotemporal trophic dynamics, and energy fluxes. 
    more » « less