skip to main content


Title: HEALM: Hardware-Efficient Approximate Logarithmic Multiplier with Reduced Error
In this work, we propose a new approximate logarithm multipliers (ALM) based on a novel error compensation scheme. The proposed hardware-efficient ALM, named HEALM, first determines the truncation width for mantissa summation in ALM. Then the error compensation or reduction is performed via a lookup table, which stores reduction factors for different regions of input operands. This is in contrast to an existing approach, in which error reduction is performed independently of the width truncation of mantissa summation. As a result, the new design will lead to more accurate result with both reduced area and power. Furthermore, different from existing approaches which will either introduce resource overheads when doing error improvement or lose accuracy when saving area and power, HEALM can improve accuracy and resource consumption at the same time. Our study shows that 8-bit HEALM can achieve up to 2.92%, 9.30%, 16.08%, 17.61% improvement in mean error, peak error, area, power consumption respectively over REALM, which is the state of art work with the same number of bits truncated. We also propose a single error coefficient mode named HEALM-TA-S, which improves the ALM design with a truncation adder (TA) for mantissa summation. Furthermore, we evaluate the proposed HEALM design in a discrete cosine transformation (DCT) application. The result shows that with different values of k, HEALM-TA can improve the image quality upon the ALM baseline by 7.8 to 17.2dB in average and HEALM-SOA can improve 2.9 to15.8dB in average, respectively. Besides, HEALM-TA and HEALM-SOA outperform all the state of artworks with k=2,3,4 on the image quality. And the single coefficient mode, HEALM-TA-S, can improve the image quality upon the baseline up to 4.1dB in average with extremely low resource consumption  more » « less
Award ID(s):
1854276
NSF-PAR ID:
10324765
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Proc. Asia South Pacific Design Automation Conference (ASP-DAC’22)
Page Range / eLocation ID:
37 to 42
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Approximate computing (AC) leverages the inherent error resilience and is used in many big-data applications from various domains such as multimedia, computer vision, signal processing, and machine learning to improve systems performance and power consumption. Like many other approximate circuits and algorithms, the memory subsystem can also be used to enhance performance and save power significantly. This paper proposes an efficient and effective systematic methodology to construct an approximate non-volatile magneto-resistive RAM (MRAM) framework using consumer-off-the-shelf (COTS) MRAM chips. In the proposed scheme, an extensive experimental characterization of memory errors is performed by manipulating the write latency of MRAM chips which exploits the inherent (intrinsic/extrinsic process variation) stochastic switching behavior of magnetic tunnel junctions (MTJs). The experimental results, involving error-resilient image compression and machine learning applications, reveal that the proposed AC framework provides a significant performance improvement and demonstrates a reduction in MRAM write energy of ~47.5% on average with negligible or no loss in output quality. 
    more » « less
  2. Abstract Background

    Lung cancer is the deadliest and second most common cancer in the United States due to the lack of symptoms for early diagnosis. Pulmonary nodules are small abnormal regions that can be potentially correlated to the occurrence of lung cancer. Early detection of these nodules is critical because it can significantly improve the patient's survival rates. Thoracic thin‐sliced computed tomography (CT) scanning has emerged as a widely used method for diagnosing and prognosis lung abnormalities.

    Purpose

    The standard clinical workflow of detecting pulmonary nodules relies on radiologists to analyze CT images to assess the risk factors of cancerous nodules. However, this approach can be error‐prone due to the various nodule formation causes, such as pollutants and infections. Deep learning (DL) algorithms have recently demonstrated remarkable success in medical image classification and segmentation. As an ever more important assistant to radiologists in nodule detection, it is imperative ensure the DL algorithm and radiologist to better understand the decisions from each other. This study aims to develop a framework integrating explainable AI methods to achieve accurate pulmonary nodule detection.

    Methods

    A robust and explainable detection (RXD) framework is proposed, focusing on reducing false positives in pulmonary nodule detection. Its implementation is based on an explanation supervision method, which uses nodule contours of radiologists as supervision signals to force the model to learn nodule morphologies, enabling improved learning ability on small dataset, and enable small dataset learning ability. In addition, two imputation methods are applied to the nodule region annotations to reduce the noise within human annotations and allow the model to have robust attributions that meet human expectations. The 480, 265, and 265 CT image sets from the public Lung Image Database Consortium and Image Database Resource Initiative (LIDC‐IDRI) dataset are used for training, validation, and testing.

    Results

    Using only 10, 30, 50, and 100 training samples sequentially, our method constantly improves the classification performance and explanation quality of baseline in terms of Area Under the Curve (AUC) and Intersection over Union (IoU). In particular, our framework with a learnable imputation kernel improves IoU from baseline by 24.0% to 80.0%. A pre‐defined Gaussian imputation kernel achieves an even greater improvement, from 38.4% to 118.8% from baseline. Compared to the baseline trained on 100 samples, our method shows less drop in AUC when trained on fewer samples. A comprehensive comparison of interpretability shows that our method aligns better with expert opinions.

    Conclusions

    A pulmonary nodule detection framework was demonstrated using public thoracic CT image datasets. The framework integrates the robust explanation supervision (RES) technique to ensure the performance of nodule classification and morphology. The method can reduce the workload of radiologists and enable them to focus on the diagnosis and prognosis of the potential cancerous pulmonary nodules at the early stage to improve the outcomes for lung cancer patients.

     
    more » « less
  3. Images are often corrupted with noise. As a result, noise reduction is an important task in image processing. Common noise reduction techniques, such as mean or median filtering, lead to blurring of the edges in the image, while fuzzy filters are able to preserve the edge information. In this work, we implement an efficient hardware design for a well-known fuzzy noise reduction filter based on stochastic computing. The filter consists of two main stages: edge detection and fuzzy smoothing. The fuzzy difference, which is encoded as bit-streams, is used to detect edges. Then, fuzzy smoothing is done to average the pixel value based on eight directions. Our experimental results show a significant reduction in the hardware area and power consumption compared to the conventional binary implementation while preserving the quality of the results. 
    more » « less
  4. The record-breaking performance of deep neural networks (DNNs) comes with heavy parameter budgets, which leads to external dynamic random access memory (DRAM) for storage. The prohibitive energy of DRAM accesses makes it nontrivial for DNN deployment on resource-constrained devices, calling for minimizing the movements of weights and data in order to improve the energy efficiency. Driven by this critical bottleneck, we present SmartDeal, a hardware-friendly algorithm framework to trade higher-cost memory storage/access for lower-cost computation, in order to aggressively boost the storage and energy efficiency, for both DNN inference and training. The core technique of SmartDeal is a novel DNN weight matrix decomposition framework with respective structural constraints on each matrix factor, carefully crafted to unleash the hardware-aware efficiency potential. Specifically, we decompose each weight tensor as the product of a small basis matrix and a large structurally sparse coefficient matrix whose nonzero elements are readily quantized to the power-of-2. The resulting sparse and readily quantized DNNs enjoy greatly reduced energy consumption in data movement as well as weight storage, while incurring minimal overhead to recover the original weights thanks to the required sparse bit-operations and cost-favorable computations. Beyond inference, we take another leap to embrace energy-efficient training, by introducing several customized techniques to address the unique roadblocks arising in training while preserving the SmartDeal structures. We also design a dedicated hardware accelerator to fully utilize the new weight structure to improve the real energy efficiency and latency performance. We conduct experiments on both vision and language tasks, with nine models, four datasets, and three settings (inference-only, adaptation, and fine-tuning). Our extensive results show that 1) being applied to inference, SmartDeal achieves up to 2.44x improvement in energy efficiency as evaluated using real hardware implementations and 2) being applied to training, SmartDeal can lead to 10.56x and 4.48x reduction in the storage and the training energy cost, respectively, with usually negligible accuracy loss, compared to state-of-the-art training baselines. Our source codes are available at: https://github.com/VITA-Group/SmartDeal. 
    more » « less
  5. Promising for digital signal processing applications, approximate computing has been extensively considered to tradeoff limited accuracy for improvements in other circuit metrics such as area, power, and performance. In this paper, approximate arithmetic circuits are proposed by using emerging nanoscale spintronic devices. Leveraging the intrinsic current-mode thresholding operation of spintronic devices, we initially present a hybrid spin-CMOS majority gate design based on a composite spintronic device structure consisting of a magnetic domain wall motion stripe and a magnetic tunnel junction. We further propose a compact and energy-efficient accuracy-configurable adder design based on the majority gate. Unlike most previous approximate circuit designs that hardwire a constant degree of approximation, this design is adaptive to the inherent resilience in various applications to different degrees of accuracy. Subsequently, we propose two new approximate compressors for utilization in fast multiplier designs. The device-circuit SPICE simulation shows 34.58% and 66% improvement in power consumption, respectively, for the accurate and approximate modes of the accuracy-configurable adder, compared to the recently reported domain wall motion-based full adder design. In addition, the proposed accuracy-configurable adder and approximate compressors can be efficiently utilized in the discrete cosine transform (DCT) as a widely-used digital image processing algorithm. The results indicate that the DCT and inverse DCT (IDCT) using the approximate multiplier achieve ~2x energy saving and 3x speed-up compared to an exactly-designed circuit, while achieving comparable quality in its output result. 
    more » « less