skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Approximate MRAM: High-performance and Power-efficient Computing with MRAM Chips for Error-tolerant Applications
Approximate computing (AC) leverages the inherent error resilience and is used in many big-data applications from various domains such as multimedia, computer vision, signal processing, and machine learning to improve systems performance and power consumption. Like many other approximate circuits and algorithms, the memory subsystem can also be used to enhance performance and save power significantly. This paper proposes an efficient and effective systematic methodology to construct an approximate non-volatile magneto-resistive RAM (MRAM) framework using consumer-off-the-shelf (COTS) MRAM chips. In the proposed scheme, an extensive experimental characterization of memory errors is performed by manipulating the write latency of MRAM chips which exploits the inherent (intrinsic/extrinsic process variation) stochastic switching behavior of magnetic tunnel junctions (MTJs). The experimental results, involving error-resilient image compression and machine learning applications, reveal that the proposed AC framework provides a significant performance improvement and demonstrates a reduction in MRAM write energy of ~47.5% on average with negligible or no loss in output quality.  more » « less
Award ID(s):
2114200
PAR ID:
10339227
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
IEEE Transactions on Computers
ISSN:
0018-9340
Page Range / eLocation ID:
1 to 1
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. With the rapid advancement of DNNs, numerous Process-in-Memory (PIM) architectures based on various memory technologies (Non-Volatile (NVM)/Volatile Memory) have been developed to accelerate AI workloads. Magnetic Random Access Memory (MRAM) is highly promising among NVMs due to its zero standby leakage, fast write/read speeds, CMOS compatibility, and high memory density. However, existing MRAM technologies such as spin-transfer torque MRAM (STT-MRAM) and spin-orbit torque MRAM (SOT-MRAM), have inherent limitations. STT-MRAM faces high write current requirements, while SOT-MRAM introduces significant area overhead due to additional access transistors. The new STT-assisted-SOT (SAS) MRAM provides an area-efficient alternative by sharing one write access transistor for multiple magnetic tunnel junctions (MTJs). This work presents the first fully digital processing-in-SAS-MRAM system to enable 8-bit floating-point (FP8) neural network inference with an application in on-device session-based recommender system. A SAS-MRAM device prototype is fabricated with 4 MTJs sharing the same SOT metal line. The proposed SAS-MRAM-based PIM macro is designed in TSMC 28nm technology. It achieves 15.31 TOPS/W energy efficiency and 269 GOPS performance for FP8 operations at 700 MHz. Compared to state-of-the-art recommender systems for the same popular YooChoose dataset, it demonstrates a 86 ×, 1.8 ×, and 1.12 × higher energy efficiency than that of GPU, SRAM-PIM, and ReRAM-PIM, respectively. 
    more » « less
  2. Magnetic Random-Access Memory (MRAM) based p-bit neuromorphic computing devices are garnering increasing interest as a means to compactly and efficiently realize machine learning operations in Restricted Boltzmann Machines (RBMs). When embedded within an RBM resistive crossbar array, the p-bit based neuron realizes a tunable sigmoidal activation function. Since the stochasticity of activation is dependent on the energy barrier of the MRAM device, it is essential to assess the impact of process variation on the voltage-dependent behavior of the sigmoid function. Other influential performance factors arise from varying energy barriers on power consumption requiring a simulation environment to facilitate the multi-objective optimization of device and network parameters. Herein, transportable Python scripts are developed to analyze the output variation under changes in device dimensions on the accuracy of machine learning applications. Evaluation with RBM circuits using the MNIST dataset reveal impacts and limits for processing variation of device fabrication in terms of the resulting energy vs. accuracy tradeoffs, and the resulting simulation framework is available via a Creative Commons license. 
    more » « less
  3. In-Memory Computing (IMC) technology has been considered to be a promising approach to solve well-known memory-wall challenge for data intensive applications. In this paper, we are the first to propose MnM, a novel IMC system with innovative architecture/circuit designs for fast and efficient Min/Max searching computation in emerging Spin-Orbit Torque Magnetic Random Access Memory (SOT-MRAM). Our proposed SOT-MRAM based in-memory logic circuits are specially optimized to perform parallel, one-cycle XNOR logic that are heavily used in the Min/Max searching-in-memory algorithm. Our novel in-memory XNOR circuit also has an overhead of just two transistors per row when compared to most prior methodologies which typically use multiple sense amplifiers or complex CMOS logic gates. We also design all other required peripheral circuits for implementing complete Min/Max searching-in-MRAM computation. Our cross-layer comprehensive experiments on Dijkstra's algorithm and other sorting algorithms in real word datasets show that our MnM could achieve significant performance improvement over CPUs, GPUs, and other competing IMC platforms based on RRAM/MRAM/DRAM. 
    more » « less
  4. System on chips (SoCs) are now designed with their own artificial intelligence (AI) accelerator segment to accommodate the ever-increasing demand of deep learning (DL) applications. With powerful multiply and accumulate (MAC) engines for matrix multiplications, these accelerators show high computing performance. However, because of limited memory resources (i.e., bandwidth and capacity), they fail to achieve optimum system performance during large batch training and inference. In this work, we propose a memory system with high on-chip capacity and bandwidth to shift the gear of AI accelerators from memory-bound to achieving system-level peak performance. We develop the memory system with design technology co-optimization (DTCO)-enabled customized spin-orbit torque (SOT)-MRAM as large on-chip memory through system technology co-optimization (STCO) and detailed characterization of the DL workloads. Our workload-aware memory system achieves 8× energy and 9× latency improvement on computer vision (CV) benchmarks in training and 8× energy and 4.5× latency improvement on natural language processing (NLP) benchmarks in training while consuming only around 50% of SRAM area at iso-capacity. 
    more » « less
  5. Spin transfer torque magnetic random access memory (STT-MRAM) offers a promising solution for low-power and high-density memory due to its compatibility with CMOS, higher density, scalable nature, and non-volatility. However, the higher energy required to write bit cells has remained a key challenge for its adaptation into battery-operated smart handheld devices. The existing low-energy writing solutions require additional complex control logic mechanisms, further constraining the available area. In this research, we propose a solution to design energy-efficient write circuits by incorporating two techniques together. First, we propose the sinusoidal power clocking mechanism replacing the DC power supply in the conventional CMOS design. Second, we propose three lookup table (LUT)-based control logic circuits and one write circuit to reduce the area and further minimize energy dissipation. The experimental results are verified over the case study implementations of 4×4 STT-MRAM macro designed using bit cell configurations: i) one transistor and one magnetic tunnel junction (MTJ) (1T-1MTJ) and ii) four transistors and two MTJs (4T-2MTJ). The post-layout simulation for the frequency range from 250 kHz to 6.25 MHz shows that the write circuit, which uses the proposed LUT-based control logic circuits and a write driver with a sinusoidal power supply, achieves more than a 65.05% average energy saving compared to the CMOS counterpart. Furthermore, the write circuit, which uses the proposed 6T write driver with the sinusoidal power supply, shows an improvement in energy saving by more than 70.60% compared to the CMOS counterpart. We also verified that the energy-saving performance remains relatively consistent with the change in temperature and the tunneling magnetoresistance (TMR) ratio. 
    more » « less