skip to main content

This content will become publicly available on May 2, 2023

Title: Ferroelectric Modulation of Surface Electronic States in BaTiO 3 for Enhanced Hydrogen Evolution Activity
Ferroelectric nanomaterials offer the promise of switchable electronic properties at the surface, with implications for photo- and electrocatalysis. Studies to date on the effect of ferroelectric surfaces in electrocatalysis have been primarily limited to nanoparticle systems where complex interfaces arise. Here, we use MBE-grown epitaxial BaTiO3 thin films with atomically sharp interfaces as model surfaces to demonstrate the effect of ferroelectric polarization on the electronic structure, intermediate binding energy, and electrochemical activity toward the hydrogen evolution reaction (HER). Surface spectroscopy and ab initio DFT +U calculations of the well-defined (001) surfaces indicate that an upward polarized surface reduces the work function relative to downward polarization and leads to a smaller HER barrier, in agreement with the higher activity observed experimentally. Employing ferroelectric polarization to create multiple adsorbate interactions over a single electrocatalytic surface, as demonstrated in this work, may offer new opportunities for nanoscale catalysis design beyond traditional descriptors.
Authors:
; ; ; ; ; ; ; ; ;
Award ID(s):
2011924
Publication Date:
NSF-PAR ID:
10324936
Journal Name:
Nano Letters
ISSN:
1530-6984
Sponsoring Org:
National Science Foundation
More Like this
  1. Two-dimensional (2D) materials offer exciting possibilities for numerous applications, including next-generation sensors and field-effect transistors (FETs). With their atomically thin form factor, it is evident that molecular activity at the interfaces of 2D materials can shape their electronic properties. Although much attention has focused on engineering the contact and dielectric interfaces in 2D material-based transistors to boost their drive current, less is understood about how to tune these interfaces to improve the long-term stability of devices. In this work, we evaluated molybdenum disulfide (MoS2) transistors under continuous electrical stress for periods lasting up to several days. During stress in ambientmore »air, we observed temporary threshold voltage shifts that increased at higher gate voltages or longer stress durations, correlating to changes in interface trap states (ΔNit) of up to 1012 cm–2. By modifying the device to include either SU-8 or Al2O3 as an additional dielectric capping layer on top of the MoS2 channel, we were able to effectively reduce or even eliminate this unstable behavior. However, we found this encapsulating material must be selected carefully, as certain choices actually amplified instability or compromised device yield, as was the case for Al2O3, which reduced yield by 20% versus all other capping layers. Further refining these strategies to preserve stability in 2D devices will be crucial for their continued integration into future technologies.« less
  2. Ferroelectric materials such as barium titanate (BaTiO3) have a wide range of applications in nano scale electronic devices due to their outstanding properties. In this study, we developed an easily extendable atomistic ReaxFF reactive force field for BaTiO3 that can capture both its field- as well as temperature-induced ferroelectric hysteresis and corresponding changes due to surface chemistry and bulk defects. Using our force field, we were able to reproduce and explain a number of experimental observations: (1) existence of a critical thickness of 4.8 nm below which ferroelectricity vanishes in BaTiO3; (2) migration and clustering of oxygen vacancies (OVs) inmore »BaTiO3 and reduction in the polarization and the curie temperature due to the OVs; (3) domain wall interaction with surface chemistry to influence ferroelectric switching and polarization magnitude. This new computational tool opens up a wide range of possibilities for making predictions for realistic ferroelectric interfaces in energy-conversion, electronic and neuromorphic systems.« less
  3. The surface chemistry and physics of oxide ferroelectric surfaces with a fixed polarization state have been studied experimentally for some time. Here, we discuss the possibility of using these materials in a different mode, namely under cyclically changing polarization conditions achievable via periodic perturbations by external fields ( e.g. , temperature, strain or electric field). We use Density Functional Theory (DFT) and electronic structure analysis to understand the polarization-dependent surface physics and chemistry of ferroelectric oxide PbTiO 3 as an example of this class of materials. This knowledge is then applied to design catalytic cycles for industrially important reactions includingmore »NO x direct decomposition and SO 2 oxidation into SO 3 . The possibility of catalyzing direct partial oxidation of methane to methanol is also investigated. More generally, we discuss how using ferroelectrics under cyclically changing polarization conditions can help overcome some of the fundamental challenges facing the catalysis community such as the limitations imposed by the Sabatier principle and scaling relations.« less
  4. Tuning the electronic properties of oxide surfaces is of pivotal importance, because they find applicability in a variety of industrial processes, including catalysis. Currently, the industrial protocols for synthesizing oxide surfaces are limited to only partial control of the oxide's properties. This is because the ceramic processes result in complex morphologies and a priori unpredictable behavior of the products. While the bulk doping of alumina surfaces has been demonstrated to enhance their catalytic applications ( i.e. hydrodesulphurization (HDS)), the fundamental understanding of this phenomenon and its effect at an atomic level remain unexplored. In our joint experimental and computational study,more »simulations based on Density Functional Theory (DFT), synthesis, and a variety of surface characterization techniques are exploited for the specific goal of understanding the structure–function relationship of phosphorus-doped γ-Al 2 O 3 surfaces. Our theoretical calculations and experimental results agree in finding that P doping of γ-Al 2 O 3 leads to a significant decrease in its work function. Our computational models show that this decrease is due to the formation of a new surface dipole, providing a clear picture of the effect of P doping at the surface of γ-Al 2 O 3 . In this study, we uncover a general paradigm for tuning support–catalyst interactions that involves electrostatic properties of doped γ-Al 2 O 3 surface, specifically the surface dipole. Our findings open a new pathway for engineering the electronic properties of metal oxides’ surfaces.« less
  5. Chromium-doped SrTiO 3 nanocrystals of perovskite structure type and 45 nm (±15 nm) edge lengths were obtained by hydrothermal synthesis in water from titanium oxide, strontium hydroxide, and chromium( iii ) nitrate. According to XPS, the majority of the surface chromium (68.3%) is present in the 3+ state and the remainder (32.2%) in the 6+ state. Optical spectroscopy confirms a broad absorption at 2.3–2.9 eV from Cr(3+) dopant states, in addition to the 3.2 eV band edge of the SrTiO 3 host. After modification with Pt nanoparticles, Cr-doped SrTiO 3 nanocrystals catalyze photochemical H 2 evolution from aqueous methanol undermore »visible light illumination (>400 nm) and with an apparent quantum yield of 0.66% at 435 nm. According to surface photovoltage spectroscopy (SPS), Cr-doped SrTiO 3 nanocrystals deposited onto gold substrates are n-type and have an effective band gap of 1.75 eV. SPS and transient illumination experiments at 2.50 eV reveal an anomalous surface photovoltage that increases with prior light exposure to values of up to −6.3 V. This photovoltage is assigned to ferroelectric polarization of the material in the space charge layer at the Au/SrTiO 3 :Cr interface. The polarization is stable for 24 h in vacuum but disappears after 12 h when samples are stored in air. The electric polarizability of SrTiO 3 :Cr is confirmed when films are exposed to static electric fields (1.20 MV m −1 ) in a fixed capacitor configuration. The discovery of a ferroelectric effect in Cr-doped SrTiO 3 could be significant for the development of improved photocatalysts for the conversion of solar energy into fuel.« less