skip to main content

Title: Improving performance of inverse Compton sources through laser chirping
Abstract We present a new method for computation of radiation spectra in the non-linear regime of operation of inverse Compton sources characterized by high laser intensities. The resulting simulations agree well with the experiments. Increasing the laser intensity changes the longitudinal velocity of the electrons during their collision, leading to considerable non-linear broadening in the scattered radiation spectra. The effects of such ponderomotive broadening are so deleterious that most inverse Compton sources either remain at low laser intensities or pay a steep price to operate at a small fraction of the physically possible peak spectral output. This ponderomotive broadening can be reduced by a suitable frequency modulation (also referred to as “chirping”, which is not necessarily linear) of the incident laser pulse, thereby drastically increasing the peak spectral density. This frequency modulation, included in the new code as an optional functionality, is used in simulations to motivate the experimental implementation of this transformative technique.
Authors:
; ; ; ; ; ; ; ;
Award ID(s):
1659177
Publication Date:
NSF-PAR ID:
10325064
Journal Name:
EPL (Europhysics Letters)
Volume:
126
Issue:
1
Page Range or eLocation-ID:
12003
ISSN:
0295-5075
Sponsoring Org:
National Science Foundation
More Like this
  1. Compact laser plasma accelerators generate high-energy electron beams with increasing quality. When used in inverse Compton backscattering, however, the relatively large electron energy spread jeopardizes potential applications requiring small bandwidths. We present here a novel interaction scheme that allows us to compensate for the negative effects of the electron energy spread on the spectrum, by introducing a transverse spatial frequency modulation in the laser pulse. Such a laser chirp, together with a properly dispersed electron beam, can substantially reduce the broadening of the Compton bandwidth due to the electron energy spread. We show theoretical analysis and numerical simulations for hard X-ray Thomson sources based on laser plasma accelerators.
  2. ABSTRACT Blazars emit a highly variable non-thermal spectrum. It is usually assumed that the same non-thermal electrons are responsible for the IR-optical-UV emission (via synchrotron) and the gamma-ray emission (via inverse Compton). Hence, the light curves in the two bands should be correlated. Orphan gamma-ray flares (i.e. lacking a luminous low-frequency counterpart) challenge our theoretical understanding of blazars. By means of large-scale two-dimensional radiative particle-in-cell simulations, we show that orphan gamma-ray flares may be a self-consistent by-product of particle energization in turbulent magnetically dominated pair plasmas. The energized particles produce the gamma-ray flare by inverse Compton scattering an external radiation field, while the synchrotron luminosity is heavily suppressed since the particles are accelerated nearly along the direction of the local magnetic field. The ratio of inverse Compton to synchrotron luminosity is sensitive to the initial strength of turbulent fluctuations (a larger degree of turbulent fluctuations weakens the anisotropy of the energized particles, thus increasing the synchrotron luminosity). Our results show that the anisotropy of the non-thermal particle population is key to modelling the blazar emission.
  3. ABSTRACT The afterglow emission from gamma-ray bursts (GRBs) is believed to originate from a relativistic blast wave driven into the circumburst medium. Although the afterglow emission from radio up to X-ray frequencies is thought to originate from synchrotron radiation emitted by relativistic, non-thermal electrons accelerated by the blast wave, the origin of the emission at high energies (HE; ≳GeV) remains uncertain. The recent detection of sub-TeV emission from GRB 190114C by the Major Atmospheric Gamma Imaging Cherenkov Telescopes (MAGIC) raises further debate on what powers the very high energy (VHE; ≳300 GeV) emission. Here, we explore the inverse Compton scenario as a candidate for the HE and VHE emissions, considering two sources of seed photons for scattering: synchrotron photons from the blast wave (synchrotron self-Compton or SSC) and isotropic photon fields external to the blast wave (external Compton). For each case, we compute the multiwavelength afterglow spectra and light curves. We find that SSC will dominate particle cooling and the GeV emission, unless a dense ambient infrared photon field, typical of star-forming regions, is present. Additionally, considering the extragalactic background light attenuation, we discuss the detectability of VHE afterglows by existing and future gamma-ray instruments for a wide range of model parameters.more »Studying GRB 190114C, we find that its afterglow emission in the Fermi-Large Area Telescope (LAT) band is synchrotron dominated. The late-time Fermi-LAT measurement (i.e. t ∼ 104 s), and the MAGIC observation also set an upper limit on the energy density of a putative external infrared photon field (i.e. ${\lesssim} 3\times 10^{-9}\, {\rm erg\, cm^{-3}}$), making the inverse Compton dominant in the sub-TeV energies.« less
  4. Standoff detection based on optical spectroscopy is an attractive method for identifying materials at a distance with very high molecular selectivity. Standoff spectroscopy can be exploited in demanding practical applications such as sorting plastics for recycling. Here, we demonstrate selective and sensitive standoff detection of polymer films using bi-material cantilever-based photothermal spectroscopy. We demonstrate that the selectivity of the technique is sufficient to discriminate various polymers. We also demonstrate in situ, point detection of thin layers of polymers deposited on bi-material cantilevers using photothermal spectroscopy. Comparison of the standoff spectra with those obtained by point detection, FTIR, and FTIR-ATR show relative broadening of peaks. Exposure of polymers to UV radiation (365 nm) reveal that the spectral peaks do not change with exposure time, but results in peak broadening with an overall increase in the background cantilever response. The sensitivity of the technique can be further improved by optimizing the thermal sensitivity of the bi-material cantilever and by increasing the number of photons impinging on the cantilever.
  5. ABSTRACT Magnetars are the most promising progenitors of fast radio bursts (FRBs). Strong radio waves propagating through the magnetar wind are subject to non-linear effects, including modulation/filamentation instabilities. We derive the dispersion relation for modulations of strong waves propagating in magnetically dominated pair plasmas focusing on dimensionless strength parameters a0 ≲ 1, and discuss implications for FRBs. As an effect of the instability, the FRB-radiation intensity develops sheets perpendicular to the direction of the wind magnetic field. When the FRB front expands outside the radius where the instability ends, the radiation sheets are scattered due to diffraction. The FRB-scattering time-scale depends on the properties of the magnetar wind. In a cold wind, the typical scattering time-scale is τsc ∼  $\mu$s–ms at the frequency $\nu \sim 1\, {\rm GHz}$. The scattering time-scale increases at low frequencies, with the scaling τsc ∝ ν−2. The frequency-dependent broadening of the brightest pulse of FRB 181112 is consistent with this scaling. From the scattering time-scale of the pulse, one can estimate that the wind Lorentz factor is larger than a few tens. In a warm wind, the scattering time-scale can approach $\tau _{\rm sc}\sim \, {\rm ns}$. Then scattering produces a frequency modulation of the observed intensitymore »with a large bandwidth, $\Delta \nu \sim 1/\tau _{\rm sc}\gtrsim 100\, {\rm MHz}$. Broad-band frequency modulations observed in FRBs could be due to scattering in a warm magnetar wind.« less