Abstract Determination of the fluxes and spectra of energetic particle precipitation into the Earth's atmosphere is of critical importance for radiation belt dynamics, magnetosphere‐ionosphere coupling, as well as atmospheric chemistry. To improve the assessments of precipitating electrons using X‐ray measurements requires deeper understanding of bremsstrahlung production, transport, and redistribution throughout the atmosphere. Here we use first‐principles Monte Carlo models to explore relativistic electron precipitation events from the perspective of bremsstrahlung X‐rays. The spatial distribution of X‐rays is quantified from the ground level up to satellite altitudes. We then simulate X‐ray images that would be captured using an ideal camera and calculate the energy spectra of X‐rays originating from monoenergetic beams of precipitating electrons. Moreover, we show how these impulse responses to monoenergetic beams can be used to reconstruct the precipitating source using an inversion technique. Modeling results show that space‐borne measurements of backscattered X‐rays provide a promising method to estimate precipitation spatial size, fluxes, and spectra. 
                        more » 
                        « less   
                    
                            
                            Geant4 simulations of x-ray photon pileup produced by runaway electrons in streamer discharges
                        
                    
    
            Runaway electron acceleration is the keystone process responsible for the production of energetic radiation by lightning and thunderstorms. In the laboratory, it remains undetermined if runaway electrons are merely a consequence of high electric fields produced at the ionization fronts of electrical discharges, or if they impact the discharge formation and propagation. In this work, we simulate photon pileup in a detector next to a spark gap. We compare laboratory measurements to ensembles of monoenergetic electron beam simulations performed with Geant4 (using the Monte Carlo method). First, we describe the x-ray emission properties of monoenergetic beams with initial energies in the 20 to 75 keV range. Second, we introduce a series of techniques to combine monoenergetic beams to produce general-shape electron energy spectra. Third, we proceed to attempt to fit the experimental data collected in the laboratory, and to discuss the ambiguities created by photon pileup and how it constrains the amount of information that can be inferred from the measurements. We show that pileup ambiguities arise from the fact that every single monoenergetic electron beam produces photon deposited energy spectra of similar qualitative shape and that increasing the electron count in any beam has the same qualitative effect of shifting the peak of the deposited energy spectrum toward higher energies. The best agreement between simulations and measurements yields a mean average error of 8.6% and a R-squared value of 0.74. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1917069
- PAR ID:
- 10325111
- Date Published:
- Journal Name:
- Physics of Plasmas
- Volume:
- 29
- Issue:
- 5
- ISSN:
- 1070-664X
- Page Range / eLocation ID:
- 053506
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            The quality of electron beams produced from plasma-based accelerators, i.e., normalized brightness and energy spread, has made transformative progress in the past several decades in both simulation and experiment. Recently, full-scale particle-in-cell (PIC) simulations have shown that electron beams with unprecedented brightness (1020–1021 A=m2=rad2) and 0.1–1 MeVenergy spread can be produced through controlled injection in a slowly expanding bubble that arises when a particle beam or laser pulse propagates in density gradient, or when a particle beam self-focuses in uniform plasma or has a superluminal flying focus. However, in previous simulations of work on self-injection triggered by an evolving laser driver in a uniform plasma, the resulting beams did not exhibit comparable brightnesses and energy spreads. Here, we demonstrate through the use of large-scale high-fidelity PIC simulations that a slowly expanding bubble driven by a laser pulse in a uniform plasma can indeed produce self-injected electron beams with similar brightness and energy spreads as for an evolving bubble driven by an electron beam driver. We consider laser spot sizes roughly equal to the matched spot sizes in a uniform plasma and find that the evolution of the bubble occurs naturally through the evolution of the laser. The effects of the electron beam quality on the choice of physical as well as numerical parameters, e.g., grid sizes and field solvers used in the PIC simulations are presented. It is found that this original and simplest injection scheme can produce electron beams with beam quality exceeding that of the more recent concepts.more » « less
- 
            We present a new model designed to simulate the process of energetic particle precipitation, a vital coupling mechanism from Earth's magnetosphere to its atmosphere. The atmospheric response, namely excess ionization in the upper and middle atmosphere, together with bremsstrahlung X-ray production, is calculated with kinetic particle simulations using the Geant4 Monte Carlo framework. Mono-energy and mono-pitch angle electron beams are simulated and combined using a Green's function approach to represent realistic electron spectra and pitch angle distributions. Results from this model include more accurate ionization profiles than previous analytical models, deeper photon penetration into the atmosphere than previous Monte Carlo model predictions, and predictions of backscatter fractions of loss cone electrons up to 40%. The model results are verified by comparison with previous precipitation modeling results, and validated using balloon X-ray measurements from the Balloon Array for RBSP Relativistic Electron Losses mission and backscattered electron energy and pitch angle measurements from the Electron Loss and Fields Investigation with a Spatio-Temporal Ambiguity-Resolving CubeSat mission. The model results and solution techniques are developed into a Python package for public use.more » « less
- 
            Abstract The search for neutrino events in correlation with 42 most intense fast radio bursts (FRBs) has been performed using the Borexino dataset from 05/2007 to 06/2021. We have searched for signals with visible energies above 250 keV within a time window of $$\pm \, 1000$$ ± 1000 s corresponding to detection time of a particular FRB. We also applied an alternative approach based on searching for specific shapes of neutrino-electron scattering spectra in the full exposure data of the Borexino detector. In particular, two incoming neutrino spectra were considered: the monoenergetic line and the spectrum expected from supernovae. The same spectra were considered for electron antineutrinos detected through inverse beta-decay reaction. No statistically significant excess over the background was observed. As a result, the strongest upper limits on FRB-associated neutrino fluences of all flavors have been obtained in the 0.5–50 MeV neutrino energy range.more » « less
- 
            Observations of Type III radio bursts discovered that electron beams with power-law energy spectra are commonly produced during solar flares. The locations of these electron beams are ~ 300 Mm above the particle acceleration region of the photosphere, and the velocities range from 3 to 10 times the local background electron thermal velocity. However, the mechanism that can commonly produce electron beams during the propagation of energetic electrons with power-law energy spectra in the corona remains unclear. In this paper, using kinetic transport theory, we find for the first time that the magnetic focusing effect governs the formation of electron beams over the observational desired distance in the corona. The magnetic focusing effect can sharply increase the bulk velocity of energetic electrons to the observed electron beam velocity within 0.4 solar radii (300 Mm) as they escape from the acceleration region and propagate upward along magnetic field lines. In more rapidly decreasing magnetic fields, energetic electrons with a harder power-law energy spectrum can generate a higher bulk velocity, producing type III radio bursts at a location much closer to the acceleration region. During propagation, the spectral index of the energetic electrons is unchanged.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    