skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Processing Chitosan for Preparing Chitosan-Functionalized Nanoparticles by Polyelectrolyte Adsorption
Award ID(s):
2011750
PAR ID:
10325147
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Langmuir
Volume:
37
Issue:
28
ISSN:
0743-7463
Page Range / eLocation ID:
8517 to 8524
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Routine high strain rate impacts from the surrounding environment can cause surface erosion, abrasion, and even catastrophic failure to many structural materials. It is thus highly desirable to develop lightweight, thin, and tough impact resistant coatings. Here, inspired by the structurally robust impact surface of the dactyl club of the peacock mantis shrimp, a silicon carbide and chitosan nanocomposite coating is developed to evaluate its impact resistance as a function of particle loading. High strain rate impact tests demonstrate that coatings with 50% and 60% SiC have optimal performance with the greatest reduction in penetration depth and damage area to the substrate. Post‐impact analysis confirms that these concentrations achieve a balance between stiffness and matrix phase continuity, efficiently dissipating impact energy while maintaining coating integrity. The addition of SiC particles helps dissipate impact energy via interphase effects, particle percolation, and frictional losses due to particle jamming. The formation of these stress paths is also modeled to better understand how the addition of particles improves coating stiffness and the stress distribution as a function of particle loading. These findings highlight the potential of bioinspired materials and their promise to promote innovation and breakthroughs in the development of resilient multifunctional materials. 
    more » « less
  2. Chitosan has emerged as a biodegradable, nontoxic polymer with multiple beneficial applications in the agricultural and biomedical sectors. As nanotechnology has evolved as a promising field, researchers have incorporated chitosan-based nanomaterials in a variety of products to enhance their efficacy and biocompatibility. Moreover, due to its inherent antimicrobial and chelating properties, and the availability of modifiable functional groups, chitosan nanoparticles were also directly used in a variety of applications. In this review, the use of chitosan-based nanomaterials in agricultural and biomedical fields related to the management of abiotic stress in plants, water availability for crops, controlling foodborne pathogens, and cancer photothermal therapy is discussed, with some insights into the possible mechanisms of action. Additionally, the toxicity arising from the accumulation of these nanomaterials in biological systems and future research avenues that had gained limited attention from the scientific community are discussed here. Overall, chitosan-based nanomaterials show promising characteristics for sustainable agricultural practices and effective healthcare in an eco-friendly manner. 
    more » « less