Neutron production in antineutrino interactions can lead to bias in energy reconstruction in neutrino oscillation experiments, but these interactions have rarely been studied. MINERvA previously studied neutron production at an average antineutrino energy of ∼3 GeV in 2016 and found deficiencies in leading models. In this paper, the MINERvA 6 GeV average antineutrino energy dataset is shown to have similar disagreements. A measurement of the cross section for an antineutrino to produce two or more neutrons and have low visible energy is presented as an experiment-independent way to explore neutron production modeling. This cross section disagrees with several leading models’ predictions. Neutron modeling techniques from nuclear physics are used to quantify neutron detection uncertainties on this result.
more »
« less
Exploring neutrino–nucleus interactions in the GeV regime using MINERvA
Abstract With the advance of particle accelerator and detector technologies, the neutrino physics landscape is rapidly expanding. As neutrino oscillation experiments enter the intensity and precision frontiers, neutrino–nucleus interaction measurements are providing crucial input. MINERvA is an experiment at Fermilab dedicated to the study of neutrino–nucleus interactions in the regime of incident neutrino energies from one to few GeV. The experiment recorded neutrino and antineutrino scattering data with the NuMI beamline from 2009 to 2019 using the Low-Energy and Medium-Energy beams that peak at 3GeV and 6GeV, respectively. This article reviews the broad spectrum of interesting nuclear and particle physics that MINERvA investigations have illuminated. The newfound, detailed knowledge of neutrino interactions with nuclear targets thereby obtained is proving essential to continued progress in the neutrino physics sector.
more »
« less
- PAR ID:
- 10325205
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Date Published:
- Journal Name:
- The European Physical Journal Special Topics
- Volume:
- 230
- Issue:
- 24
- ISSN:
- 1951-6355
- Page Range / eLocation ID:
- 4243 to 4257
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Dolezal, Zdenek (Ed.)The MINERvA experiment has completed its physics run using the 6 GeV, on-axis NuMI ME beam at Fermilab. The experiment received a total of 12 x 10^20 protons on target in both neutrino and antineutrino mode running. This allows MINERvA a new level of statistics in neutrino interaction measurements with the ability to measure multi-dimensional differential cross sections. In addition, in order to make the most of this jump in statistics, a new level of precision in fluxprediction has been achieved. We present results from MINERvA's Medium Energy (ME) physics program, including the new kinematic regimes that are now accessible.more » « less
-
Abstract Maximizing the discovery potential of increasingly precise neutrino experiments will require an improved theoretical understanding of neutrino-nucleus cross sections over a wide range of energies. Low-energy interactions are needed to reconstruct the energies of astrophysical neutrinos from supernovae bursts and search for new physics using increasingly precise measurement of coherent elastic neutrino scattering. Higher-energy interactions involve a variety of reaction mechanisms including quasi-elastic scattering, resonance production, and deep inelastic scattering that must all be included to reliably predict cross sections for energies relevant to DUNE and other accelerator neutrino experiments. Refined nuclear interaction models in these energy regimes will also be valuable for other applications, such as measurements of reactor, solar, and atmospheric neutrinos. This manuscript discusses the theoretical status, challenges, required resources, and path forward for achieving precise predictions of neutrino-nucleus scattering and emphasizes the need for a coordinated theoretical effort involved lattice QCD, nuclear effective theories, phenomenological models of the transition region, and event generators.more » « less
-
Final-state kinematic imbalances are measured in mesonless production of νμ+A→μ−+p+X in the MINERvA tracker. Initial- and final-state nuclear effects are probed using the direction of the μ−−p transverse momentum imbalance and the initial-state momentum of the struck neutron. Differential cross sections are compared to predictions based on current approaches to medium modeling. These models underpredict the cross section at intermediate intranuclear momentum transfers that generally exceed the Fermi momenta. As neutrino interaction models need to correctly incorporate the effect of the nucleus in order to predict neutrino energy resolution in oscillation experiments, this result points to a region of phase space where additional cross section strength is needed in current models, and demonstrates a new technique that would be suitable for use in fine-grained liquid argon detectors where the effect of the nucleus may be even larger.more » « less
-
Coherent elastic neutrino-nucleus scattering (CEνNS) offers a valuable approach in searching for physics beyond the Standard Model. The Ricochet experiment aims to perform a precision measurement of the CEνNS spectrum at the Institut Laue-Langevin nuclear reactor with cryogenic solid-state detectors. The experiment will employ an array of cryogenic thermal detectors, each with a mass of around 30 g and an energy threshold of 50 eV. One section of this array will contain 9 Transition Edge Sensor (TES)-based calorimeters. The design will not only fulfill requirements for Ricochet, but also act as a demonstrator for future neutrino experiments that will require thousands of macroscopic detectors. In this article, we present an updated TES chip design, as well as performance predictions based on a numerical modeling.more » « less
An official website of the United States government

