skip to main content


Title: Transition Edge Sensor Chip Design of a Modular CEvNs Detector for the Ricochet Experiment
Coherent elastic neutrino-nucleus scattering (CEνNS) offers a valuable approach in searching for physics beyond the Standard Model. The Ricochet experiment aims to perform a precision measurement of the CEνNS spectrum at the Institut Laue-Langevin nuclear reactor with cryogenic solid-state detectors. The experiment will employ an array of cryogenic thermal detectors, each with a mass of around 30 g and an energy threshold of 50 eV. One section of this array will contain 9 Transition Edge Sensor (TES)-based calorimeters. The design will not only fulfill requirements for Ricochet, but also act as a demonstrator for future neutrino experiments that will require thousands of macroscopic detectors. In this article, we present an updated TES chip design, as well as performance predictions based on a numerical modeling.  more » « less
Award ID(s):
2013203 2209585
NSF-PAR ID:
10384765
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Journal of Low Temperature Physics
ISSN:
0022-2291
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The BICEP/Keck Collaboration is currently leading the quest to the highest sensitivity measurements of the polarized CMB anisotropies on degree scale with a series of cryogenic telescopes, of which BICEP Array is the latest Stage-3 upgrade with a total of ∼32,000 detectors. The instrument comprises 4 receivers spanning 30 to 270 GHz, with the low-frequency 30/40 GHz deployed to the South Pole Station in late 2019. The full complement of receivers is forecast to set the most stringent constraints on the tensor to scalar ratio r. Building on these advances, the overarching small-aperture telescope concept is already being used as the reference for further Stage-4 experiment design. In this paper I will present the development of the BICEP Array 150 GHz detector module and its fabrication requirements, with highlights on the high-density time division multiplexing (TDM) design of the cryogenic circuit boards. The low-impedance wiring required between the detectors and the first-stage SQUID amplifiers is crucial to maintain a stiff voltage bias on the detectors. A novel multi-layer FR4 Printed Circuit Board (PCB) with superconducting traces, capable of reading out up to 648 detectors, is presented along with its validation tests. I will also describe an ultra-high density TDM detector module we developed for a CMB-S4-like experiment that allows up to 1,920 detectors to be read out. TDM has been chosen as the detector readout technology for the Cosmic Microwave Background Stage-4 (CMB-S4) experiment based on its proven low-noise performance, predictable costs and overall maturity of the architecture. The heritage for TDM is rooted in mm- and submm-wave experiments dating back 20 years and has since evolved to support a multiplexing factor of 64x in Stage-3 experiments. 
    more » « less
  2. Zmuidzinas, Jonas ; Gao, Jian-Rong (Ed.)
    We present recent developments on Cornell’s 2nd generation z (redshift) and Early Universe Spectrometer (ZEUS-2). ZEUS-2 is a long-slit echelle-grating spectrometer, originally implemented to deliver R∼1000 spectroscopy in the 350-, and 450-micron telluric windows using NIST Transition-Edge Sensed (TES) bolometer arrays. We have expanded its capabilities to also cover the 200-micron window, and present first-light data for the new array from our 2019 observing campaign on the Atacama Pathfinder EXperiment (APEX) telescope. We also discuss the various enhancements we have implemented to improve observing efficiency and noise performance, including identifying and mitigating vibrations in hardware and improving the stability and robustness of the control software for the detector temperature. Furthermore, we have implemented several software routines to interface with the telescope control systems. These improvements, demonstrated during our recent observing campaign in Nov-Dec 2021, resulted in enhanced reliability and ease of operation, as well as increased sensitivity. A data-driven software pipeline, leveraging data from all 300 detectors on the array to remove common-mode noise, was implemented, and noise performance was further improved by robustly detecting unstable detectors and disabling them during observations. 
    more » « less
  3. Abstract The Cryogenic Underground Observatory for Rare Events (CUORE) is the most sensitive experiment searching for neutrinoless double-beta decay (0 νββ ) in 130 Te. CUORE uses a cryogenic array of 988 TeO 2 calorimeters operated at ∼10 mK with a total mass of 741 kg. To further increase the sensitivity, the detector response must be well understood. Here, we present a non-linear thermal model for the CUORE experiment on a detector-by-detector basis. We have examined both equilibrium and dynamic electro-thermal models of detectors by numerically fitting non-linear differential equations to the detector data of a subset of CUORE channels which are well characterized and representative of all channels. We demonstrate that the hot-electron effect and electric-field dependence of resistance in NTD-Ge thermistors alone are inadequate to describe our detectors' energy-dependent pulse shapes. We introduce an empirical second-order correction factor in the exponential temperature dependence of the thermistor, which produces excellent agreement with energy-dependent pulse shape data up to 6 MeV. We also present a noise analysis using the fitted thermal parameters and show that the intrinsic thermal noise is negligible compared to the observed noise for our detectors. 
    more » « less
  4. Abstract CUPID will be a next generation experiment searching for the neutrinoless double $$\beta $$ β decay, whose discovery would establish the Majorana nature of the neutrino. Based on the experience achieved with the CUORE experiment, presently taking data at LNGS, CUPID aims to reach a background free environment by means of scintillating Li $$_{2}$$ 2 $$^{100}$$ 100 MoO $$_4$$ 4 crystals coupled to light detectors. Indeed, the simultaneous heat and light detection allows us to reject the dominant background of $$\alpha $$ α particles, as proven by the CUPID-0 and CUPID-Mo demonstrators. In this work we present the results of the first test of the CUPID baseline module. In particular, we propose a new optimized detector structure and light sensors design to enhance the engineering and the light collection, respectively. We characterized the heat detectors, achieving an energy resolution of (5.9 ± 0.2) keV FWHM at the Q -value of $$^{100}$$ 100 Mo (about 3034 keV). We studied the light collection of the baseline CUPID design with respect to an alternative configuration which features gravity-assisted light detectors’ mounting. In both cases we obtained an improvement in the light collection with respect to past measures and we validated the particle identification capability of the detector, which ensures an $$\alpha $$ α particle rejection higher than 99.9%, fully satisfying the requirements for CUPID. 
    more » « less
  5. Zmuidzinas, Jonas ; Gao, Jian-Rong (Ed.)
    The Cosmology Large Angular Scale Surveyor (CLASS) is a polarization-sensitive telescope array located at an altitude of 5,200 m in the Chilean Atacama Desert. CLASS is designed to measure "E-mode" (even parity) and "B-mode" (odd parity) polarization patterns in the Cosmic Microwave Background (CMB) over large angular scales with the aim of improving our understanding of inflation, reionization, and dark matter. CLASS is currently observing with three telescopes covering four frequency bands: one at 40 GHz (Q); one at 90 GHz (W1); and one dichroic system at 150/220 GHz (G). In these proceedings, we discuss the updated design and in-lab characterization of new 90 GHz detectors. The new detectors include design changes to the transition-edge sensor (TES) bolometer architecture, which aim to improve stability and optical efficiency. We assembled and tested four new detector wafers, to replace four modules of the W1 focal plane. These detectors were installed into the W1 telescope, and will achieve first light in the austral winter of 2022. We present electrothermal parameters and bandpass measurements from in-lab dark and optical testing. From in-lab dark tests, we also measure a median NEP of 12.3 aW√ s across all four wafers about the CLASS signal band, which is below the expected photon NEP of 32 aW√ s from the field. We therefore expect the new detectors to be photon noise limited. 
    more » « less