skip to main content


Title: In Silico Screen Identifies a New Family of Agonists for the Bacterial Mechanosensitive Channel MscL
MscL is a highly conserved mechanosensitive channel found in the majority of bacterial species, including pathogens. It functions as a biological emergency release valve, jettisoning solutes from the cytoplasm upon acute hypoosmotic stress. It opens the largest known gated pore and has been heralded as an antibacterial target. Although there are no known endogenous ligands, small compounds have recently been shown to specifically bind to and open the channel, leading to decreased cell growth and viability. Their binding site is at the cytoplasmic/membrane and subunit interfaces of the protein, which has been recently been proposed to play an essential role in channel gating. Here, we have targeted this pocket using in silico screening, resulting in the discovery of a new family of compounds, distinct from other known MscL-specific agonists. Our findings extended the study of this functional region, the progression of MscL as a viable drug target, and demonstrated the power of in silico screening for identifying and improving the design of MscL agonists.  more » « less
Award ID(s):
1955260
NSF-PAR ID:
10325207
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Antibiotics
Volume:
11
Issue:
4
ISSN:
2079-6382
Page Range / eLocation ID:
433
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Resistance to antibiotics is a serious and worsening threat to human health worldwide, and there is an urgent need to develop new antibiotics that can avert it. One possible solution is the development of compounds that possess multiple modes of action, requiring at least two mutations to acquire resistance. Compound SCH-79797 both avoids resistance and has two mechanisms of action: one inhibiting the folate pathway, and a second described as “membrane permeabilization”; however, the mechanism by which membranes from bacterial cells, but not the host, are disrupted has remained mysterious. The opening of the bacterial mechanosensitive channel of large conductance, MscL, which ordinarily serves the physiological role of osmotic emergency release valves gated by hypoosmotic shock, has been previously demonstrated to affect bacterial membrane permeabilization. MscL allows the rapid permeabilization of both ions and solutes through the opening of the largest known gated pore, which has a diameter of 30 Å. We found that SCH-79797 and IRS-16, a more potent derivative, directly bind to the MscL channel and produce membrane permeabilization as a result of its activation. These findings suggest that possessing or adding an MscL-activating component to an antibiotic compound could help to lower toxicity and evade antibiotic resistance. 
    more » « less
  2. Three protein targets from SARS-CoV-2, the viral pathogen that causes COVID-19, are studied: the main protease, the 2′-O-RNA methyltransferase, and the nucleocapsid (N) protein. For the main protease, the nucleophilicity of the catalytic cysteine C145 is enabled by coupling to three histidine residues, H163 and H164 and catalytic dyad partner H41. These electrostatic couplings enable significant population of the deprotonated state of C145. For the RNA methyltransferase, the catalytic lysine K6968 that serves as a Brønsted base has significant population of its deprotonated state via strong coupling with K6844 and Y6845. For the main protease, Partial Order Optimum Likelihood (POOL) predicts two clusters of biochemically active residues; one includes the catalytic H41 and C145 and neighboring residues. The other surrounds a second pocket adjacent to the catalytic site and includes S1 residues F140, L141, H163, E166, and H172 and also S2 residue D187. This secondary recognition site could serve as an alternative target for the design of molecular probes. From in silico screening of library compounds, ligands with predicted affinity for the secondary site are reported. For the NSP16-NSP10 complex that comprises the RNA methyltransferase, three different sites are predicted. One is the catalytic core at the conserved K-D-K-E motif that includes catalytic residues D6928, K6968, and E7001 plus K6844. The second site surrounds the catalytic core and consists of Y6845, C6849, I6866, H6867, F6868, V6894, D6895, D6897, I6926, S6927, Y6930, and K6935. The third is located at the heterodimer interface. Ligands predicted to have high affinity for the first or second sites are reported. Three sites are also predicted for the nucleocapsid protein. This work uncovers key interactions that contribute to the function of the three viral proteins and also suggests alternative sites for ligand design. 
    more » « less
  3. Bienstock, Rachelle J. (Ed.)
    Three protein targets from SARS-CoV-2, the viral pathogen that causes COVID-19, are studied: the main protease, the 2’-O-RNA methyltransferase, and the nucleocapsid (N) protein. For the main protease, the nucleophilicity of the catalytic cysteine C145 is enabled by coupling to three histidine residues, H163 and H164 and catalytic dyad partner H41. These electrostatic couplings enable significant population of the deprotonated state of C145. For the RNA methyltransferase, the catalytic lysine K6968 that serves as a Brønsted base has significant population of its deprotonated state via strong coupling with K6844 and Y6845. For the main protease, Partial Order Optimum Likelihood (POOL) predicts two clusters of biochemically active residues; one includes the catalytic H41 and C145 and neighboring residues. The other surrounds a second pocket adjacent to the catalytic site and includes S1 residues F140, L141, H163, E166, and H172 and also S2 residue D187. This secondary recognition site could serve as an alternative target for the design of molecular probes. From in silico screening of library compounds, ligands with predicted affinity for the secondary site are reported. For the NSP16-NSP10 complex that comprises the RNA methyltransferase, three different sites are predicted. One is the catalytic core at the conserved K-D-K-E motif that includes catalytic residues D6928, K6968, and E7001 plus K6844. The second site surrounds the catalytic core and consists of Y6845, C6849, I6866, H6867, F6868, V6894, D6895, D6897, I6926, S6927, Y6930, and K6935. The third is located at the heterodimer interface. Ligands predicted to have high affinity for the first or second sites are reported. Three sites are also predicted for the nucleocapsid protein. This work uncovers key interactions that contribute to the function of the three viral proteins and also suggests alternative sites for ligand design. 
    more » « less
  4. null (Ed.)
    To accelerate materials discovery, computational methods such as inverse materials design have been proposed to predict the properties of target compounds of interest for specific applications. This in silico process can be used to guide subsequent synthesis and characterization. Inverse design is especially relevant for the field of organic molecules, for which there are nearly infinite synthetic modifications possible. With a target application of UV-absorbing, visibly transparent solar cells in mind, we calculated the orbital and transition energies of over 360 possible coronene derivatives. Our screening, or the constraints we imposed on the calculated series, resulted in the selection of three new derivatives, namely contorted pentabenzocoronene (cPBC), contorted tetrabenzocoronene (cTBC), and contorted tetrabenzofuranylbenzocoronene (cTBFBC) for synthesis and characterization. Our materials characterization found agreement between our calculated and experimental energy values, and through testing of these materials in organic photovoltaic (OPV) devices, we fabricated solar cells with an open-circuit voltage of 1.84 V and an average visible transparency of 88% of the active layer; both quantities exceed previous records for visibly transparent coronene-based solar cells. This work highlights the promise of inverse materials design for future materials discovery, as well as improvements to an exciting application of UV-targeted solar cells. 
    more » « less
  5. Abstract

    As COVID‐19 infection caused severe public health concerns recently, the development of novel antivirals has become the need of the hour. Main protease (Mpro) has been an attractive target for antiviral drugs since it plays a vital role in polyprotein processing and virus maturation. Herein we report the discovery of a novel class of inhibitors against the SARS‐CoV‐2, bearing histidineα‐nitrile motif embedded on a simple dipeptide framework.In‐vitroandin‐silicostudies revealed that the histidineα‐nitrile motif envisioned to target the Mprocontributes to the inhibitory activity. Among a series of dipeptides synthesized featuring this novel structural motif, some dipeptides displayed strong viral reduction (EC50=0.48 μM) with a high selectivity index, SI>454.54. These compounds also exhibit strong binding energies in the range of −28.7 to −34.2 Kcal/mol. The simple dipeptide structural framework, amenable to quick structural variations, coupled with ease of synthesis from readily available commercial starting materials are the major attractive features of this novel class of SARS‐CoV‐2 inhibitors. The histidineα‐nitrile dipeptides raise the hope of discovering potent drug candidates based on this motif to fight the dreaded SARS‐CoV‐2.

     
    more » « less