skip to main content


Title: Designing Deep Neural Networks Robust to Sensor Failure in Mobile Health Environments
Missing data is a very common challenge in health monitoring systems and one reason for that is that they are largely dependent on different types of sensors. A critical characteristic of the sensor-based prediction systems is their dependency on hardware, which is prone to physical limitations that add another layer of complexity to the algorithmic component of the system. For instance, it might not be realistic to assume that the prediction model has access to all sensors at all times. This can happen in the real-world setup if one or more sensors on a device malfunction or temporarily have to be disabled due to power limitations. The consequence of such a scenario is that the model faces ``missing input data'' from those unavailable sensors at the deployment time, and as a result, the quality of prediction can degrade significantly. While the missing input data is a very well-known problem, to the best of our knowledge, no study has been done to efficiently minimize the performance drop when one or more sensors may be unavailable for a significant amount of time. The sensor failure problem investigated in this paper can be viewed as a spatial missing data problem, which has not been explored to date. In this work, we show that the naive known methods of dealing with missing input data such as zero-filling or mean-filling are not suitable for sensor-based prediction and we propose an algorithm that can reconstruct the missing input data for unavailable sensors. Moreover, we show that on the MobiAct, MotionSense, and MHEALTH activity classification benchmarks, our proposed method can outperform the baselines by large accuracy margins of 8.2%, 15.1%, and 11.6%, respectively.  more » « less
Award ID(s):
2210133
NSF-PAR ID:
10325313
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
The 44th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC 2022)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Human activity recognition (HAR) is an important component in a number of health applications, including rehabilitation, Parkinson’s disease, daily activity monitoring, and fitness monitoring. State-of-the-art HAR approaches use multiple sensors on the body to accurately identify activities at runtime. These approaches typically assume that data from all sensors are available for runtime activity recognition. However, data from one or more sensors may be unavailable due to malfunction, energy constraints, or communication challenges between the sensors. Missing data can lead to significant degradation in the accuracy, thus affecting quality of service to users. A common approach for handling missing data is to train classifiers or sensor data recovery algorithms for each combination of missing sensors. However, this results in significant memory and energy overhead on resource-constrained wearable devices. In strong contrast to prior approaches, this paper presents a clustering-based approach (CIM) to impute missing data at runtime. We first define a set of possible clusters and representative data patterns for each sensor in HAR. Then, we create and store a mapping between clusters across sensors. At runtime, when data from a sensor are missing, we utilize the stored mapping table to obtain most likely cluster for the missing sensor. The representative window for the identified cluster is then used as imputation to perform activity classification. We also provide a method to obtain imputation-aware activity prediction sets to handle uncertainty in data when using imputation. Experiments on three HAR datasets show that CIM achieves accuracy within 10% of a baseline without missing data for one missing sensor when providing single activity labels. The accuracy gap drops to less than 1% with imputation-aware classification. Measurements on a low-power processor show that CIM achieves close to 100% energy savings compared to state-of-the-art generative approaches.

     
    more » « less
  2. In this paper, we propose a novel transient full-chip thermal map estimation method for multi-core commercial CPU based on the data-driven generative adversarial learning method. We treat the thermal modeling problem as an image-generation problem using the generative neural networks. In stead of using traditional functional unit powers as input, the new models are directly based on the measurable real-time high level chip utilizations and thermal sensor information of commercial chips without any assumption of additional physical sensors requirement. The resulting thermal map estimation method, called {\it ThermGAN} can provide tool-accurate full-chip {\it transient} thermal maps from the given performance monitor traces of commercial off-the-shelf multi-core processors. In our work, both generator and discriminator are composed of simple convolutional layers with Wasserstein distance as loss function. ThermGAN can provide the transient and real-time thermal map without using any historical data for training and inferences, which is contrast with a recent RNN-based thermal map estimation method in which historical data is needed. Experimental results show the trained model is very accurate in thermal estimation with an average RMSE of 0.47C, namely, 0.63\% of the full-scale error. Our data further show that the speed of the model is faster than 7.5ms per inference, which is two orders of magnitude faster than the traditional finite element based thermal analysis. Furthermore, the new method is about 4x more accurate than recently proposed LSTM-based thermal map estimation method and has faster inference speed. It also achieves about 2x accuracy with much less computational cost than a state-of-the-art pre-silicon based estimation method. 
    more » « less
  3. Our research aims to improve the accuracy of Earthquake Early Warning (EEW) systems by means of machine learning. EEW systems are designed to detect and characterize medium and large earthquakes before their damaging effects reach a certain location. Traditional EEW methods based on seismometers fail to accurately identify large earthquakes due to their sensitivity to the ground motion velocity. The recently introduced high-precision GPS stations, on the other hand, are ineffective to identify medium earthquakes due to its propensity to produce noisy data. In addition, GPS stations and seismometers may be deployed in large numbers across different locations and may produce a significant volume of data consequently, affecting the response time and the robustness of EEW systems.In practice, EEW can be seen as a typical classification problem in the machine learning field: multi-sensor data are given in input, and earthquake severity is the classification result. In this paper, we introduce the Distributed Multi-Sensor Earthquake Early Warning (DMSEEW) system, a novel machine learning-based approach that combines data from both types of sensors (GPS stations and seismometers) to detect medium and large earthquakes. DMSEEW is based on a new stacking ensemble method which has been evaluated on a real-world dataset validated with geoscientists. The system builds on a geographically distributed infrastructure, ensuring an efficient computation in terms of response time and robustness to partial infrastructure failures. Our experiments show that DMSEEW is more accurate than the traditional seismometer-only approach and the combined-sensors (GPS and seismometers) approach that adopts the rule of relative strength. 
    more » « less
  4. Falls in the elderly are associated with significant morbidity and mortality. While numerous fall detection devices incorporating AI and machine learning algorithms have been developed, no known smartwatch-based system has been used successfully in real-time to detect falls for elderly persons. We have developed and deployed a SmartFall system on a commodity-based smartwatch which has been trialled by nine elderly participants. The system, while being usable and welcomed by the participants in our trials, has two serious limitations. The first limitation is the inability to collect a large amount of personalized data for training. When the fall detection model, which is trained with insufficient data, is used in the real world, it generates a large amount of false positives. The second limitation is the model drift problem. This means an accurate model trained using data collected with a specific device performs sub-par when used in another device. Therefore, building one model for each type of device/watch is not a scalable approach for developing smartwatch-based fall detection system. To tackle those issues, we first collected three datasets including accelerometer data for fall detection problem from different devices: the Microsoft watch (MSBAND), the Huawei watch, and the meta-sensor device. After that, a transfer learning strategy was applied to first explore the use of transfer learning to overcome the small dataset training problem for fall detection. We also demonstrated the use of transfer learning to generalize the model across the heterogeneous devices. Our preliminary experiments demonstrate the effectiveness of transfer learning for improving fall detection, achieving an F1 score higher by over 10% on average, an AUC higher by over 0.15 on average, and a smaller false positive prediction rate than the non-transfer learning approach across various datasets collected using different devices with different hardware specifications. 
    more » « less
  5. Due to the surge of cloud-assisted AI services, the problem of designing resilient prediction serving systems that can effectively cope with stragglers and minimize response delays has attracted much interest. The common approach for tackling this problem is replication which assigns the same prediction task to multiple workers. This approach, however, is inefficient and incurs significant resource overheads. Hence, a learning-based approach known as parity model (ParM) has been recently proposed which learns models that can generate ``parities’’ for a group of predictions to reconstruct the predictions of the slow/failed workers. While this learning-based approach is more resource-efficient than replication, it is tailored to the specific model hosted by the cloud and is particularly suitable for a small number of queries (typically less than four) and tolerating very few stragglers (mostly one). Moreover, ParM does not handle Byzantine adversarial workers. We propose a different approach, named Approximate Coded Inference (ApproxIFER), that does not require training any parity models, hence it is agnostic to the model hosted by the cloud and can be readily applied to different data domains and model architectures. Compared with earlier works, ApproxIFER can handle a general number of stragglers and scales significantly better with the number of queries. Furthermore, ApproxIFER is robust against Byzantine workers. Our extensive experiments on a large number of datasets and model architectures show significant degraded mode accuracy improvement by up to 58% over ParM. 
    more » « less